Copied to
clipboard

G = C4.3S5order 480 = 25·3·5

3rd non-split extension by C4 of S5 acting via S5/A5=C2

non-abelian, not soluble

Aliases: C4.3S5, SL2(F5):1C22, C4.A5:3C2, C2.7(C2xS5), C2.S5:1C2, SmallGroup(480,948)

Series: ChiefDerived Lower central Upper central

C1C2C4C4.A5 — C4.3S5
SL2(F5) — C4.3S5
SL2(F5) — C4.3S5
C1C2C4

Subgroups: 934 in 76 conjugacy classes, 8 normal (6 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C8, C2xC4, D4, Q8, C23, D5, C10, Dic3, C12, D6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, Dic5, C20, D10, SL2(F3), C4xS3, D12, C3:D4, C3xD4, C22xS3, C8:C22, C5:C8, C4xD5, GL2(F3), C4.A4, S3xD4, C4.F5, C4.3S4, SL2(F5), C2.S5, C4.A5, C4.3S5
Quotients: C1, C2, C22, S5, C2xS5, C4.3S5

Character table of C4.3S5

 class 12A2B2C2D34A4B56A6B6C8A8B101220A20B
 size 112020302023024204040606024402424
ρ1111111111111111111    trivial
ρ211-1-1111111-1-1-1-11111    linear of order 2
ρ311-11-11-1111-11-111-1-1-1    linear of order 2
ρ4111-1-11-11111-11-11-1-1-1    linear of order 2
ρ544220140-11-1-100-11-1-1    orthogonal lifted from S5
ρ6442-201-40-11-1100-1-111    orthogonal lifted from C2xS5
ρ744-2-20140-111100-11-1-1    orthogonal lifted from S5
ρ844-2201-40-111-100-1-111    orthogonal lifted from C2xS5
ρ94-4000-200-12000010-5--5    complex faithful
ρ104-4000-200-12000010--5-5    complex faithful
ρ1155-11-1-1-510-1-111-10100    orthogonal lifted from C2xS5
ρ1255111-1510-111-1-10-100    orthogonal lifted from S5
ρ1355-1-11-1510-1-1-1110-100    orthogonal lifted from S5
ρ14551-1-1-1-510-11-1-110100    orthogonal lifted from C2xS5
ρ15660020-6-210000010-1-1    orthogonal lifted from C2xS5
ρ166600-206-21000001011    orthogonal lifted from S5
ρ178-8000200-2-200002000    orthogonal faithful
ρ1812-12000000200000-2000    orthogonal faithful

Smallest permutation representation of C4.3S5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 3 5 7)(2 34 6 38)(4 21 8 17)(9 33 13 37)(10 22 14 18)(11 32 15 28)(12 27 16 31)(19 36 23 40)(20 25 24 29)(26 39 30 35)
(1 5)(3 7)(9 31)(10 28)(11 25)(12 30)(13 27)(14 32)(15 29)(16 26)(17 40)(18 37)(19 34)(20 39)(21 36)(22 33)(23 38)(24 35)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3,5,7)(2,34,6,38)(4,21,8,17)(9,33,13,37)(10,22,14,18)(11,32,15,28)(12,27,16,31)(19,36,23,40)(20,25,24,29)(26,39,30,35), (1,5)(3,7)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26)(17,40)(18,37)(19,34)(20,39)(21,36)(22,33)(23,38)(24,35)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3,5,7)(2,34,6,38)(4,21,8,17)(9,33,13,37)(10,22,14,18)(11,32,15,28)(12,27,16,31)(19,36,23,40)(20,25,24,29)(26,39,30,35), (1,5)(3,7)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26)(17,40)(18,37)(19,34)(20,39)(21,36)(22,33)(23,38)(24,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,3,5,7),(2,34,6,38),(4,21,8,17),(9,33,13,37),(10,22,14,18),(11,32,15,28),(12,27,16,31),(19,36,23,40),(20,25,24,29),(26,39,30,35)], [(1,5),(3,7),(9,31),(10,28),(11,25),(12,30),(13,27),(14,32),(15,29),(16,26),(17,40),(18,37),(19,34),(20,39),(21,36),(22,33),(23,38),(24,35)]])

Matrix representation of C4.3S5 in GL4(F3) generated by

2101
0210
0100
2202
,
2211
1020
2011
0220
,
1000
1200
2012
1002
G:=sub<GL(4,GF(3))| [2,0,0,2,1,2,1,2,0,1,0,0,1,0,0,2],[2,1,2,0,2,0,0,2,1,2,1,2,1,0,1,0],[1,1,2,1,0,2,0,0,0,0,1,0,0,0,2,2] >;

C4.3S5 in GAP, Magma, Sage, TeX

C_4._3S_5
% in TeX

G:=Group("C4.3S5");
// GroupNames label

G:=SmallGroup(480,948);
// by ID

G=gap.SmallGroup(480,948);
# by ID

Export

Character table of C4.3S5 in TeX

׿
x
:
Z
F
o
wr
Q
<