Extensions 1→N→G→Q→1 with N=C2xC20 and Q=Dic3

Direct product G=NxQ with N=C2xC20 and Q=Dic3
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C2xC20 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC20):1Dic3 = (C2xC60):C4φ: Dic3/C3C4 ⊆ Aut C2xC201204(C2xC20):1Dic3480,304
(C2xC20):2Dic3 = D10.10D12φ: Dic3/C3C4 ⊆ Aut C2xC20120(C2xC20):2Dic3480,311
(C2xC20):3Dic3 = C2xC60:C4φ: Dic3/C3C4 ⊆ Aut C2xC20120(C2xC20):3Dic3480,1064
(C2xC20):4Dic3 = (C2xC12):6F5φ: Dic3/C3C4 ⊆ Aut C2xC201204(C2xC20):4Dic3480,1065
(C2xC20):5Dic3 = C2xC4xC3:F5φ: Dic3/C3C4 ⊆ Aut C2xC20120(C2xC20):5Dic3480,1063
(C2xC20):6Dic3 = C5xC23.7D6φ: Dic3/C3C4 ⊆ Aut C2xC201204(C2xC20):6Dic3480,153
(C2xC20):7Dic3 = C23.7D30φ: Dic3/C3C4 ⊆ Aut C2xC201204(C2xC20):7Dic3480,194
(C2xC20):8Dic3 = C5xC6.C42φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20):8Dic3480,150
(C2xC20):9Dic3 = C30.29C42φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20):9Dic3480,191
(C2xC20):10Dic3 = C2xC60:5C4φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20):10Dic3480,890
(C2xC20):11Dic3 = C23.26D30φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20):11Dic3480,891
(C2xC20):12Dic3 = C2xC4xDic15φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20):12Dic3480,887
(C2xC20):13Dic3 = C10xC4:Dic3φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20):13Dic3480,804
(C2xC20):14Dic3 = C5xC23.26D6φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20):14Dic3480,805

Non-split extensions G=N.Q with N=C2xC20 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2xC20).1Dic3 = (C2xC60).C4φ: Dic3/C3C4 ⊆ Aut C2xC202404(C2xC20).1Dic3480,310
(C2xC20).2Dic3 = C30.11C42φ: Dic3/C3C4 ⊆ Aut C2xC20480(C2xC20).2Dic3480,307
(C2xC20).3Dic3 = C30.7M4(2)φ: Dic3/C3C4 ⊆ Aut C2xC20240(C2xC20).3Dic3480,308
(C2xC20).4Dic3 = Dic5.13D12φ: Dic3/C3C4 ⊆ Aut C2xC20480(C2xC20).4Dic3480,309
(C2xC20).5Dic3 = C60:C8φ: Dic3/C3C4 ⊆ Aut C2xC20480(C2xC20).5Dic3480,306
(C2xC20).6Dic3 = C2xC12.F5φ: Dic3/C3C4 ⊆ Aut C2xC20240(C2xC20).6Dic3480,1061
(C2xC20).7Dic3 = C60.C8φ: Dic3/C3C4 ⊆ Aut C2xC202404(C2xC20).7Dic3480,303
(C2xC20).8Dic3 = C60.59(C2xC4)φ: Dic3/C3C4 ⊆ Aut C2xC201204(C2xC20).8Dic3480,1062
(C2xC20).9Dic3 = C2xC15:C16φ: Dic3/C3C4 ⊆ Aut C2xC20480(C2xC20).9Dic3480,302
(C2xC20).10Dic3 = C4xC15:C8φ: Dic3/C3C4 ⊆ Aut C2xC20480(C2xC20).10Dic3480,305
(C2xC20).11Dic3 = C2xC60.C4φ: Dic3/C3C4 ⊆ Aut C2xC20240(C2xC20).11Dic3480,1060
(C2xC20).12Dic3 = C5xC12.10D4φ: Dic3/C3C4 ⊆ Aut C2xC202404(C2xC20).12Dic3480,155
(C2xC20).13Dic3 = C60.10D4φ: Dic3/C3C4 ⊆ Aut C2xC202404(C2xC20).13Dic3480,196
(C2xC20).14Dic3 = C5xC42.S3φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).14Dic3480,122
(C2xC20).15Dic3 = C5xC12.55D4φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20).15Dic3480,149
(C2xC20).16Dic3 = C42.D15φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).16Dic3480,163
(C2xC20).17Dic3 = C60:5C8φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).17Dic3480,164
(C2xC20).18Dic3 = C60.212D4φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20).18Dic3480,190
(C2xC20).19Dic3 = C60.7C8φ: Dic3/C6C2 ⊆ Aut C2xC202402(C2xC20).19Dic3480,172
(C2xC20).20Dic3 = C2xC60.7C4φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20).20Dic3480,886
(C2xC20).21Dic3 = C4xC15:3C8φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).21Dic3480,162
(C2xC20).22Dic3 = C2xC15:3C16φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).22Dic3480,171
(C2xC20).23Dic3 = C22xC15:3C8φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).23Dic3480,885
(C2xC20).24Dic3 = C5xC12:C8φ: Dic3/C6C2 ⊆ Aut C2xC20480(C2xC20).24Dic3480,123
(C2xC20).25Dic3 = C5xC12.C8φ: Dic3/C6C2 ⊆ Aut C2xC202402(C2xC20).25Dic3480,131
(C2xC20).26Dic3 = C10xC4.Dic3φ: Dic3/C6C2 ⊆ Aut C2xC20240(C2xC20).26Dic3480,800
(C2xC20).27Dic3 = C20xC3:C8central extension (φ=1)480(C2xC20).27Dic3480,121
(C2xC20).28Dic3 = C10xC3:C16central extension (φ=1)480(C2xC20).28Dic3480,130
(C2xC20).29Dic3 = C2xC10xC3:C8central extension (φ=1)480(C2xC20).29Dic3480,799

׿
x
:
Z
F
o
wr
Q
<