Copied to
clipboard

G = C2xC4xC3:F5order 480 = 25·3·5

Direct product of C2xC4 and C3:F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xC4xC3:F5, C30:2C42, C6:1(C4xF5), C60:8(C2xC4), (C2xC60):7C4, (C2xC12):7F5, C12:8(C2xF5), (D5xC12):9C4, C15:3(C2xC42), (C4xD5):6Dic3, D5:2(C4xDic3), (C4xD5).97D6, (C2xC20):5Dic3, C10:2(C4xDic3), C20:3(C2xDic3), (C3xD5):3C42, (C6xDic5):13C4, D10.15(C4xS3), C6.35(C22xF5), (C2xDic5):7Dic3, Dic5:6(C2xDic3), C30.73(C22xC4), (C6xD5).60C23, D10.15(C2xDic3), D10.45(C22xS3), (C22xD5).101D6, C10.4(C22xDic3), (D5xC12).125C22, C3:2(C2xC4xF5), C5:2(C2xC4xDic3), D5.3(S3xC2xC4), (C2xC4xD5).19S3, C2.2(C22xC3:F5), (D5xC2xC12).33C2, (C2xC6).46(C2xF5), (C2xC30).40(C2xC4), (C22xC3:F5).6C2, C22.18(C2xC3:F5), (C6xD5).42(C2xC4), (C2xC3:F5).18C22, (C3xDic5):25(C2xC4), (D5xC2xC6).143C22, (C3xD5).3(C22xC4), (C2xC10).16(C2xDic3), SmallGroup(480,1063)

Series: Derived Chief Lower central Upper central

C1C15 — C2xC4xC3:F5
C1C5C15C3xD5C6xD5C2xC3:F5C22xC3:F5 — C2xC4xC3:F5
C15 — C2xC4xC3:F5
C1C2xC4

Generators and relations for C2xC4xC3:F5
 G = < a,b,c,d,e | a2=b4=c3=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 908 in 216 conjugacy classes, 97 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C6, C2xC4, C2xC4, C23, D5, C10, C10, Dic3, C12, C12, C2xC6, C2xC6, C15, C42, C22xC4, Dic5, C20, F5, D10, D10, C2xC10, C2xDic3, C2xC12, C2xC12, C22xC6, C3xD5, C30, C30, C2xC42, C4xD5, C2xDic5, C2xC20, C2xF5, C22xD5, C4xDic3, C22xDic3, C22xC12, C3xDic5, C60, C3:F5, C6xD5, C6xD5, C2xC30, C4xF5, C2xC4xD5, C22xF5, C2xC4xDic3, D5xC12, C6xDic5, C2xC60, C2xC3:F5, D5xC2xC6, C2xC4xF5, C4xC3:F5, D5xC2xC12, C22xC3:F5, C2xC4xC3:F5
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C42, C22xC4, F5, C4xS3, C2xDic3, C22xS3, C2xC42, C2xF5, C4xDic3, S3xC2xC4, C22xDic3, C3:F5, C4xF5, C22xF5, C2xC4xDic3, C2xC3:F5, C2xC4xF5, C4xC3:F5, C22xC3:F5, C2xC4xC3:F5

Smallest permutation representation of C2xC4xC3:F5
On 120 points
Generators in S120
(1 64)(2 65)(3 61)(4 62)(5 63)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 106 76 91)(62 107 77 92)(63 108 78 93)(64 109 79 94)(65 110 80 95)(66 111 81 96)(67 112 82 97)(68 113 83 98)(69 114 84 99)(70 115 85 100)(71 116 86 101)(72 117 87 102)(73 118 88 103)(74 119 89 104)(75 120 90 105)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 49 19 34)(2 46 18 32)(3 48 17 35)(4 50 16 33)(5 47 20 31)(6 58 22 45)(7 60 21 43)(8 57 25 41)(9 59 24 44)(10 56 23 42)(11 53 27 40)(12 55 26 38)(13 52 30 36)(14 54 29 39)(15 51 28 37)(61 108 77 95)(62 110 76 93)(63 107 80 91)(64 109 79 94)(65 106 78 92)(66 118 82 105)(67 120 81 103)(68 117 85 101)(69 119 84 104)(70 116 83 102)(71 113 87 100)(72 115 86 98)(73 112 90 96)(74 114 89 99)(75 111 88 97)

G:=sub<Sym(120)| (1,64)(2,65)(3,61)(4,62)(5,63)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,49,19,34)(2,46,18,32)(3,48,17,35)(4,50,16,33)(5,47,20,31)(6,58,22,45)(7,60,21,43)(8,57,25,41)(9,59,24,44)(10,56,23,42)(11,53,27,40)(12,55,26,38)(13,52,30,36)(14,54,29,39)(15,51,28,37)(61,108,77,95)(62,110,76,93)(63,107,80,91)(64,109,79,94)(65,106,78,92)(66,118,82,105)(67,120,81,103)(68,117,85,101)(69,119,84,104)(70,116,83,102)(71,113,87,100)(72,115,86,98)(73,112,90,96)(74,114,89,99)(75,111,88,97)>;

G:=Group( (1,64)(2,65)(3,61)(4,62)(5,63)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,106,76,91)(62,107,77,92)(63,108,78,93)(64,109,79,94)(65,110,80,95)(66,111,81,96)(67,112,82,97)(68,113,83,98)(69,114,84,99)(70,115,85,100)(71,116,86,101)(72,117,87,102)(73,118,88,103)(74,119,89,104)(75,120,90,105), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,49,19,34)(2,46,18,32)(3,48,17,35)(4,50,16,33)(5,47,20,31)(6,58,22,45)(7,60,21,43)(8,57,25,41)(9,59,24,44)(10,56,23,42)(11,53,27,40)(12,55,26,38)(13,52,30,36)(14,54,29,39)(15,51,28,37)(61,108,77,95)(62,110,76,93)(63,107,80,91)(64,109,79,94)(65,106,78,92)(66,118,82,105)(67,120,81,103)(68,117,85,101)(69,119,84,104)(70,116,83,102)(71,113,87,100)(72,115,86,98)(73,112,90,96)(74,114,89,99)(75,111,88,97) );

G=PermutationGroup([[(1,64),(2,65),(3,61),(4,62),(5,63),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120)], [(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,106,76,91),(62,107,77,92),(63,108,78,93),(64,109,79,94),(65,110,80,95),(66,111,81,96),(67,112,82,97),(68,113,83,98),(69,114,84,99),(70,115,85,100),(71,116,86,101),(72,117,87,102),(73,118,88,103),(74,119,89,104),(75,120,90,105)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,49,19,34),(2,46,18,32),(3,48,17,35),(4,50,16,33),(5,47,20,31),(6,58,22,45),(7,60,21,43),(8,57,25,41),(9,59,24,44),(10,56,23,42),(11,53,27,40),(12,55,26,38),(13,52,30,36),(14,54,29,39),(15,51,28,37),(61,108,77,95),(62,110,76,93),(63,107,80,91),(64,109,79,94),(65,106,78,92),(66,118,82,105),(67,120,81,103),(68,117,85,101),(69,119,84,104),(70,116,83,102),(71,113,87,100),(72,115,86,98),(73,112,90,96),(74,114,89,99),(75,111,88,97)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I···4X 5 6A6B6C6D6E6F6G10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order122222223444444444···456666666101010121212121212121215152020202030···3060···60
size1111555521111555515···154222101010104442222101010104444444···44···4

72 irreducible representations

dim11111111222222244444444
type+++++-+--++++
imageC1C2C2C2C4C4C4C4S3Dic3D6Dic3Dic3D6C4xS3F5C2xF5C2xF5C3:F5C4xF5C2xC3:F5C2xC3:F5C4xC3:F5
kernelC2xC4xC3:F5C4xC3:F5D5xC2xC12C22xC3:F5D5xC12C6xDic5C2xC60C2xC3:F5C2xC4xD5C4xD5C4xD5C2xDic5C2xC20C22xD5D10C2xC12C12C2xC6C2xC4C6C4C22C2
# reps141242216122111812124428

Matrix representation of C2xC4xC3:F5 in GL6(F61)

6000000
0600000
001000
000100
000010
000001
,
100000
010000
0011000
0001100
0000110
0000011
,
45250000
5150000
002705555
0063360
0006336
005555027
,
100000
010000
000100
000010
000001
0060606060
,
18440000
55430000
0011000
0000011
0001100
0050505050

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[45,5,0,0,0,0,25,15,0,0,0,0,0,0,27,6,0,55,0,0,0,33,6,55,0,0,55,6,33,0,0,0,55,0,6,27],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[18,55,0,0,0,0,44,43,0,0,0,0,0,0,11,0,0,50,0,0,0,0,11,50,0,0,0,0,0,50,0,0,0,11,0,50] >;

C2xC4xC3:F5 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_3\rtimes F_5
% in TeX

G:=Group("C2xC4xC3:F5");
// GroupNames label

G:=SmallGroup(480,1063);
// by ID

G=gap.SmallGroup(480,1063);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,100,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^3=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<