extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2xF5) = D60:C4 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8+ | C12.1(C2xF5) | 480,227 |
C12.2(C2xF5) = Dic6:F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8- | C12.2(C2xF5) | 480,229 |
C12.3(C2xF5) = D12:4F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8- | C12.3(C2xF5) | 480,231 |
C12.4(C2xF5) = D60:2C4 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8+ | C12.4(C2xF5) | 480,233 |
C12.5(C2xF5) = Dic5.Dic6 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.5(C2xF5) | 480,235 |
C12.6(C2xF5) = Dic5.4Dic6 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.6(C2xF5) | 480,236 |
C12.7(C2xF5) = D10.Dic6 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8 | C12.7(C2xF5) | 480,237 |
C12.8(C2xF5) = D10.2Dic6 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8 | C12.8(C2xF5) | 480,238 |
C12.9(C2xF5) = D20:Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.9(C2xF5) | 480,312 |
C12.10(C2xF5) = Dic10:Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.10(C2xF5) | 480,313 |
C12.11(C2xF5) = Dic10:2Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.11(C2xF5) | 480,314 |
C12.12(C2xF5) = D20:2Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.12(C2xF5) | 480,315 |
C12.13(C2xF5) = C4:F5:3S3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.13(C2xF5) | 480,983 |
C12.14(C2xF5) = Dic6:5F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8- | C12.14(C2xF5) | 480,984 |
C12.15(C2xF5) = S3xC4.F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.15(C2xF5) | 480,988 |
C12.16(C2xF5) = D12.F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8- | C12.16(C2xF5) | 480,989 |
C12.17(C2xF5) = D15:M4(2) | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.17(C2xF5) | 480,991 |
C12.18(C2xF5) = Dic6.F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8+ | C12.18(C2xF5) | 480,992 |
C12.19(C2xF5) = Dic10.Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8 | C12.19(C2xF5) | 480,1066 |
C12.20(C2xF5) = D20.Dic3 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 240 | 8 | C12.20(C2xF5) | 480,1068 |
C12.21(C2xF5) = Q8xC3:F5 | φ: C2xF5/D5 → C22 ⊆ Aut C12 | 120 | 8 | C12.21(C2xF5) | 480,1069 |
C12.22(C2xF5) = D12:F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8+ | C12.22(C2xF5) | 480,228 |
C12.23(C2xF5) = Dic30:C4 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8- | C12.23(C2xF5) | 480,230 |
C12.24(C2xF5) = D12:2F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8- | C12.24(C2xF5) | 480,232 |
C12.25(C2xF5) = D60:5C4 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8+ | C12.25(C2xF5) | 480,234 |
C12.26(C2xF5) = F5xDic6 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8- | C12.26(C2xF5) | 480,982 |
C12.27(C2xF5) = D12.2F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8- | C12.27(C2xF5) | 480,987 |
C12.28(C2xF5) = D60.C4 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8+ | C12.28(C2xF5) | 480,990 |
C12.29(C2xF5) = F5xC3:C8 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.29(C2xF5) | 480,223 |
C12.30(C2xF5) = C30.C42 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.30(C2xF5) | 480,224 |
C12.31(C2xF5) = C30.3C42 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.31(C2xF5) | 480,225 |
C12.32(C2xF5) = C30.4C42 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.32(C2xF5) | 480,226 |
C12.33(C2xF5) = S3xC5:C16 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.33(C2xF5) | 480,239 |
C12.34(C2xF5) = D15:C16 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.34(C2xF5) | 480,240 |
C12.35(C2xF5) = C15:M5(2) | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.35(C2xF5) | 480,241 |
C12.36(C2xF5) = D30.C8 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.36(C2xF5) | 480,242 |
C12.37(C2xF5) = (C4xS3):F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.37(C2xF5) | 480,985 |
C12.38(C2xF5) = S3xD5:C8 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.38(C2xF5) | 480,986 |
C12.39(C2xF5) = C5:C8:D6 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.39(C2xF5) | 480,993 |
C12.40(C2xF5) = C3xD20:C4 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.40(C2xF5) | 480,287 |
C12.41(C2xF5) = C3xD4:F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.41(C2xF5) | 480,288 |
C12.42(C2xF5) = C3xQ8:F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.42(C2xF5) | 480,289 |
C12.43(C2xF5) = C3xQ8:2F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.43(C2xF5) | 480,290 |
C12.44(C2xF5) = C3xD4.F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.44(C2xF5) | 480,1053 |
C12.45(C2xF5) = C3xQ8.F5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 240 | 8 | C12.45(C2xF5) | 480,1055 |
C12.46(C2xF5) = C3xQ8xF5 | φ: C2xF5/F5 → C2 ⊆ Aut C12 | 120 | 8 | C12.46(C2xF5) | 480,1056 |
C12.47(C2xF5) = C120:C4 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.47(C2xF5) | 480,298 |
C12.48(C2xF5) = D5.D24 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.48(C2xF5) | 480,299 |
C12.49(C2xF5) = C40.Dic3 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.49(C2xF5) | 480,300 |
C12.50(C2xF5) = C24.1F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.50(C2xF5) | 480,301 |
C12.51(C2xF5) = C2xC12.F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | | C12.51(C2xF5) | 480,1061 |
C12.52(C2xF5) = C60.59(C2xC4) | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.52(C2xF5) | 480,1062 |
C12.53(C2xF5) = (C2xC12):6F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.53(C2xF5) | 480,1065 |
C12.54(C2xF5) = C24.F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.54(C2xF5) | 480,294 |
C12.55(C2xF5) = C120.C4 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.55(C2xF5) | 480,295 |
C12.56(C2xF5) = C8xC3:F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.56(C2xF5) | 480,296 |
C12.57(C2xF5) = C24:F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.57(C2xF5) | 480,297 |
C12.58(C2xF5) = C2xC15:C16 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 480 | | C12.58(C2xF5) | 480,302 |
C12.59(C2xF5) = C60.C8 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.59(C2xF5) | 480,303 |
C12.60(C2xF5) = C2xC60.C4 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | | C12.60(C2xF5) | 480,1060 |
C12.61(C2xF5) = C3xC40:C4 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.61(C2xF5) | 480,273 |
C12.62(C2xF5) = C3xD5.D8 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 120 | 4 | C12.62(C2xF5) | 480,274 |
C12.63(C2xF5) = C3xC40.C4 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.63(C2xF5) | 480,275 |
C12.64(C2xF5) = C3xD10.Q8 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | 4 | C12.64(C2xF5) | 480,276 |
C12.65(C2xF5) = C6xC4.F5 | φ: C2xF5/D10 → C2 ⊆ Aut C12 | 240 | | C12.65(C2xF5) | 480,1048 |
C12.66(C2xF5) = C3xD5:C16 | central extension (φ=1) | 240 | 4 | C12.66(C2xF5) | 480,269 |
C12.67(C2xF5) = C3xC8.F5 | central extension (φ=1) | 240 | 4 | C12.67(C2xF5) | 480,270 |
C12.68(C2xF5) = F5xC24 | central extension (φ=1) | 120 | 4 | C12.68(C2xF5) | 480,271 |
C12.69(C2xF5) = C3xC8:F5 | central extension (φ=1) | 120 | 4 | C12.69(C2xF5) | 480,272 |
C12.70(C2xF5) = C6xC5:C16 | central extension (φ=1) | 480 | | C12.70(C2xF5) | 480,277 |
C12.71(C2xF5) = C3xC20.C8 | central extension (φ=1) | 240 | 4 | C12.71(C2xF5) | 480,278 |
C12.72(C2xF5) = C6xD5:C8 | central extension (φ=1) | 240 | | C12.72(C2xF5) | 480,1047 |
C12.73(C2xF5) = C3xD5:M4(2) | central extension (φ=1) | 120 | 4 | C12.73(C2xF5) | 480,1049 |
C12.74(C2xF5) = C3xD10.C23 | central extension (φ=1) | 120 | 4 | C12.74(C2xF5) | 480,1052 |