Extensions 1→N→G→Q→1 with N=C6 and Q=C4xF5

Direct product G=NxQ with N=C6 and Q=C4xF5
dρLabelID
F5xC2xC12120F5xC2xC12480,1050

Semidirect products G=N:Q with N=C6 and Q=C4xF5
extensionφ:Q→Aut NdρLabelID
C6:1(C4xF5) = C2xC4xC3:F5φ: C4xF5/C4xD5C2 ⊆ Aut C6120C6:1(C4xF5)480,1063
C6:2(C4xF5) = C2xDic3xF5φ: C4xF5/C2xF5C2 ⊆ Aut C6120C6:2(C4xF5)480,998

Non-split extensions G=N.Q with N=C6 and Q=C4xF5
extensionφ:Q→Aut NdρLabelID
C6.1(C4xF5) = C8xC3:F5φ: C4xF5/C4xD5C2 ⊆ Aut C61204C6.1(C4xF5)480,296
C6.2(C4xF5) = C24:F5φ: C4xF5/C4xD5C2 ⊆ Aut C61204C6.2(C4xF5)480,297
C6.3(C4xF5) = C4xC15:C8φ: C4xF5/C4xD5C2 ⊆ Aut C6480C6.3(C4xF5)480,305
C6.4(C4xF5) = C30.11C42φ: C4xF5/C4xD5C2 ⊆ Aut C6480C6.4(C4xF5)480,307
C6.5(C4xF5) = D10.10D12φ: C4xF5/C4xD5C2 ⊆ Aut C6120C6.5(C4xF5)480,311
C6.6(C4xF5) = F5xC3:C8φ: C4xF5/C2xF5C2 ⊆ Aut C61208C6.6(C4xF5)480,223
C6.7(C4xF5) = C30.C42φ: C4xF5/C2xF5C2 ⊆ Aut C61208C6.7(C4xF5)480,224
C6.8(C4xF5) = C30.3C42φ: C4xF5/C2xF5C2 ⊆ Aut C61208C6.8(C4xF5)480,225
C6.9(C4xF5) = C30.4C42φ: C4xF5/C2xF5C2 ⊆ Aut C61208C6.9(C4xF5)480,226
C6.10(C4xF5) = D10.20D12φ: C4xF5/C2xF5C2 ⊆ Aut C6120C6.10(C4xF5)480,243
C6.11(C4xF5) = Dic3xC5:C8φ: C4xF5/C2xF5C2 ⊆ Aut C6480C6.11(C4xF5)480,244
C6.12(C4xF5) = C30.M4(2)φ: C4xF5/C2xF5C2 ⊆ Aut C6480C6.12(C4xF5)480,245
C6.13(C4xF5) = F5xC24central extension (φ=1)1204C6.13(C4xF5)480,271
C6.14(C4xF5) = C3xC8:F5central extension (φ=1)1204C6.14(C4xF5)480,272
C6.15(C4xF5) = C12xC5:C8central extension (φ=1)480C6.15(C4xF5)480,280
C6.16(C4xF5) = C3xC10.C42central extension (φ=1)480C6.16(C4xF5)480,282
C6.17(C4xF5) = C3xD10.3Q8central extension (φ=1)120C6.17(C4xF5)480,286

׿
x
:
Z
F
o
wr
Q
<