Copied to
clipboard

G = Q8.D30order 480 = 25·3·5

2nd non-split extension by Q8 of D30 acting via D30/C10=S3

non-abelian, soluble

Aliases: Q8.2D30, SL2(F3).8D10, Q8:D15:1C2, (C2xC10).7S4, (Q8xC10):2S3, (C2xQ8):2D15, (C5xQ8).9D6, C10.21(C2xS4), C22.2(C5:S4), Q8.D15:1C2, C5:3(Q8.D6), (C2xSL2(F3)):3D5, (C10xSL2(F3)):3C2, (C5xSL2(F3)).8C22, C2.7(C2xC5:S4), SmallGroup(480,1029)

Series: Derived Chief Lower central Upper central

C1C2Q8C5xSL2(F3) — Q8.D30
C1C2Q8C5xQ8C5xSL2(F3)Q8:D15 — Q8.D30
C5xSL2(F3) — Q8.D30
C1C2C22

Generators and relations for Q8.D30
 G = < a,b,c,d | a4=c30=1, b2=d2=a2, bab-1=a-1, cac-1=b, dad-1=a-1b, cbc-1=ab, dbd-1=a2b, dcd-1=a2c-1 >

Subgroups: 634 in 78 conjugacy classes, 17 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C8, C2xC4, D4, Q8, Q8, D5, C10, C10, Dic3, D6, C2xC6, C15, M4(2), SD16, Q16, C2xQ8, C4oD4, Dic5, C20, D10, C2xC10, SL2(F3), C3:D4, D15, C30, C8.C22, C5:2C8, Dic10, C4xD5, D20, C5:D4, C2xC20, C5xQ8, C5xQ8, CSU2(F3), GL2(F3), C2xSL2(F3), Dic15, D30, C2xC30, C4.Dic5, Q8:D5, C5:Q16, C4oD20, Q8xC10, Q8.D6, C5xSL2(F3), C15:7D4, C20.C23, Q8.D15, Q8:D15, C10xSL2(F3), Q8.D30
Quotients: C1, C2, C22, S3, D5, D6, D10, S4, D15, C2xS4, D30, Q8.D6, C5:S4, C2xC5:S4, Q8.D30

Smallest permutation representation of Q8.D30
On 80 points
Generators in S80
(1 22 9 39)(2 28 10 45)(3 34 6 36)(4 25 7 42)(5 31 8 48)(11 62 16 77)(12 53 17 68)(13 74 18 59)(14 65 19 80)(15 56 20 71)(21 43 38 26)(23 33 40 50)(24 46 41 29)(27 49 44 32)(30 37 47 35)(51 61 66 76)(52 57 67 72)(54 64 69 79)(55 60 70 75)(58 63 73 78)
(1 27 9 44)(2 33 10 50)(3 24 6 41)(4 30 7 47)(5 21 8 38)(11 52 16 67)(12 73 17 58)(13 64 18 79)(14 55 19 70)(15 76 20 61)(22 32 39 49)(23 45 40 28)(25 35 42 37)(26 48 43 31)(29 36 46 34)(51 56 66 71)(53 63 68 78)(54 59 69 74)(57 62 72 77)(60 65 75 80)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 16 9 11)(2 20 10 15)(3 14 6 19)(4 18 7 13)(5 12 8 17)(21 58 38 73)(22 72 39 57)(23 56 40 71)(24 70 41 55)(25 54 42 69)(26 68 43 53)(27 52 44 67)(28 66 45 51)(29 80 46 65)(30 64 47 79)(31 78 48 63)(32 62 49 77)(33 76 50 61)(34 60 36 75)(35 74 37 59)

G:=sub<Sym(80)| (1,22,9,39)(2,28,10,45)(3,34,6,36)(4,25,7,42)(5,31,8,48)(11,62,16,77)(12,53,17,68)(13,74,18,59)(14,65,19,80)(15,56,20,71)(21,43,38,26)(23,33,40,50)(24,46,41,29)(27,49,44,32)(30,37,47,35)(51,61,66,76)(52,57,67,72)(54,64,69,79)(55,60,70,75)(58,63,73,78), (1,27,9,44)(2,33,10,50)(3,24,6,41)(4,30,7,47)(5,21,8,38)(11,52,16,67)(12,73,17,58)(13,64,18,79)(14,55,19,70)(15,76,20,61)(22,32,39,49)(23,45,40,28)(25,35,42,37)(26,48,43,31)(29,36,46,34)(51,56,66,71)(53,63,68,78)(54,59,69,74)(57,62,72,77)(60,65,75,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16,9,11)(2,20,10,15)(3,14,6,19)(4,18,7,13)(5,12,8,17)(21,58,38,73)(22,72,39,57)(23,56,40,71)(24,70,41,55)(25,54,42,69)(26,68,43,53)(27,52,44,67)(28,66,45,51)(29,80,46,65)(30,64,47,79)(31,78,48,63)(32,62,49,77)(33,76,50,61)(34,60,36,75)(35,74,37,59)>;

G:=Group( (1,22,9,39)(2,28,10,45)(3,34,6,36)(4,25,7,42)(5,31,8,48)(11,62,16,77)(12,53,17,68)(13,74,18,59)(14,65,19,80)(15,56,20,71)(21,43,38,26)(23,33,40,50)(24,46,41,29)(27,49,44,32)(30,37,47,35)(51,61,66,76)(52,57,67,72)(54,64,69,79)(55,60,70,75)(58,63,73,78), (1,27,9,44)(2,33,10,50)(3,24,6,41)(4,30,7,47)(5,21,8,38)(11,52,16,67)(12,73,17,58)(13,64,18,79)(14,55,19,70)(15,76,20,61)(22,32,39,49)(23,45,40,28)(25,35,42,37)(26,48,43,31)(29,36,46,34)(51,56,66,71)(53,63,68,78)(54,59,69,74)(57,62,72,77)(60,65,75,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16,9,11)(2,20,10,15)(3,14,6,19)(4,18,7,13)(5,12,8,17)(21,58,38,73)(22,72,39,57)(23,56,40,71)(24,70,41,55)(25,54,42,69)(26,68,43,53)(27,52,44,67)(28,66,45,51)(29,80,46,65)(30,64,47,79)(31,78,48,63)(32,62,49,77)(33,76,50,61)(34,60,36,75)(35,74,37,59) );

G=PermutationGroup([[(1,22,9,39),(2,28,10,45),(3,34,6,36),(4,25,7,42),(5,31,8,48),(11,62,16,77),(12,53,17,68),(13,74,18,59),(14,65,19,80),(15,56,20,71),(21,43,38,26),(23,33,40,50),(24,46,41,29),(27,49,44,32),(30,37,47,35),(51,61,66,76),(52,57,67,72),(54,64,69,79),(55,60,70,75),(58,63,73,78)], [(1,27,9,44),(2,33,10,50),(3,24,6,41),(4,30,7,47),(5,21,8,38),(11,52,16,67),(12,73,17,58),(13,64,18,79),(14,55,19,70),(15,76,20,61),(22,32,39,49),(23,45,40,28),(25,35,42,37),(26,48,43,31),(29,36,46,34),(51,56,66,71),(53,63,68,78),(54,59,69,74),(57,62,72,77),(60,65,75,80)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,16,9,11),(2,20,10,15),(3,14,6,19),(4,18,7,13),(5,12,8,17),(21,58,38,73),(22,72,39,57),(23,56,40,71),(24,70,41,55),(25,54,42,69),(26,68,43,53),(27,52,44,67),(28,66,45,51),(29,80,46,65),(30,64,47,79),(31,78,48,63),(32,62,49,77),(33,76,50,61),(34,60,36,75),(35,74,37,59)]])

41 conjugacy classes

class 1 2A2B2C 3 4A4B4C5A5B6A6B6C8A8B10A···10F15A15B15C15D20A20B20C20D30A···30L
order12223444556668810···10151515152020202030···30
size11260866602288860602···28888121212128···8

41 irreducible representations

dim11112222223344466
type++++++++++++-++
imageC1C2C2C2S3D5D6D10D15D30S4C2xS4Q8.D6Q8.D6Q8.D30C5:S4C2xC5:S4
kernelQ8.D30Q8.D15Q8:D15C10xSL2(F3)Q8xC10C2xSL2(F3)C5xQ8SL2(F3)C2xQ8Q8C2xC10C10C5C5C1C22C2
# reps111112124422121222

Matrix representation of Q8.D30 in GL4(F241) generated by

1200
24024000
151522515
16151516
,
313000
22521000
22522501
2402252400
,
7419600
2414300
6824081
682491231
,
23100162
100150170
20398010
1050010
G:=sub<GL(4,GF(241))| [1,240,15,16,2,240,15,15,0,0,225,15,0,0,15,16],[31,225,225,240,30,210,225,225,0,0,0,240,0,0,1,0],[74,24,68,68,196,143,24,24,0,0,0,91,0,0,81,231],[231,10,203,105,0,0,98,0,0,150,0,0,162,170,10,10] >;

Q8.D30 in GAP, Magma, Sage, TeX

Q_8.D_{30}
% in TeX

G:=Group("Q8.D30");
// GroupNames label

G:=SmallGroup(480,1029);
// by ID

G=gap.SmallGroup(480,1029);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,3389,170,1347,4204,3168,172,2525,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^30=1,b^2=d^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d^-1=a^-1*b,c*b*c^-1=a*b,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<