Copied to
clipboard

G = D9xC27order 486 = 2·35

Direct product of C27 and D9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D9xC27, C9:3C54, C92.5C6, (C9xC27):1C2, C9.7(C3xD9), C3.4(C9xD9), C3.1(S3xC27), (C3xC27).3S3, (C9xD9).2C3, (C3xD9).2C9, (C3xC9).11C18, C32.12(S3xC9), (C3xC9).47(C3xS3), SmallGroup(486,14)

Series: Derived Chief Lower central Upper central

C1C9 — D9xC27
C1C3C9C3xC9C92C9xC27 — D9xC27
C9 — D9xC27
C1C27

Generators and relations for D9xC27
 G = < a,b,c | a27=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 88 in 36 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C9, D9, C18, C3xS3, C27, C54, C3xD9, S3xC9, C9xD9, S3xC27, D9xC27
9C2
2C3
3S3
9C6
2C9
2C9
2C9
2C9
2C9
3C3xS3
9C18
2C3xC9
2C27
2C27
2C27
2C27
3S3xC9
9C54
2C3xC27
3S3xC27

Smallest permutation representation of D9xC27
On 54 points
Generators in S54
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 7 13 19 25 4 10 16 22)(2 8 14 20 26 5 11 17 23)(3 9 15 21 27 6 12 18 24)(28 49 43 37 31 52 46 40 34)(29 50 44 38 32 53 47 41 35)(30 51 45 39 33 54 48 42 36)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)

G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,7,13,19,25,4,10,16,22)(2,8,14,20,26,5,11,17,23)(3,9,15,21,27,6,12,18,24)(28,49,43,37,31,52,46,40,34)(29,50,44,38,32,53,47,41,35)(30,51,45,39,33,54,48,42,36), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,7,13,19,25,4,10,16,22)(2,8,14,20,26,5,11,17,23)(3,9,15,21,27,6,12,18,24)(28,49,43,37,31,52,46,40,34)(29,50,44,38,32,53,47,41,35)(30,51,45,39,33,54,48,42,36), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,7,13,19,25,4,10,16,22),(2,8,14,20,26,5,11,17,23),(3,9,15,21,27,6,12,18,24),(28,49,43,37,31,52,46,40,34),(29,50,44,38,32,53,47,41,35),(30,51,45,39,33,54,48,42,36)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44)]])

162 conjugacy classes

class 1  2 3A3B3C3D3E6A6B9A···9F9G···9AM18A···18F27A···27R27S···27CL54A···54R
order1233333669···99···918···1827···2727···2754···54
size1911222991···12···29···91···12···29···9

162 irreducible representations

dim1111111122222222
type++++
imageC1C2C3C6C9C18C27C54S3D9C3xS3C3xD9S3xC9C9xD9S3xC27D9xC27
kernelD9xC27C9xC27C9xD9C92C3xD9C3xC9D9C9C3xC27C27C3xC9C9C32C3C3C1
# reps112266181813266181854

Matrix representation of D9xC27 in GL2(F109) generated by

350
035
,
270
0105
,
0105
270
G:=sub<GL(2,GF(109))| [35,0,0,35],[27,0,0,105],[0,27,105,0] >;

D9xC27 in GAP, Magma, Sage, TeX

D_9\times C_{27}
% in TeX

G:=Group("D9xC27");
// GroupNames label

G:=SmallGroup(486,14);
// by ID

G=gap.SmallGroup(486,14);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,68,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c|a^27=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D9xC27 in TeX

׿
x
:
Z
F
o
wr
Q
<