Copied to
clipboard

G = F5xC25order 500 = 22·53

Direct product of C25 and F5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: F5xC25, C5:C100, D5.C50, C52.2C20, (C5xC25):1C4, (C5xF5).C5, C5.4(C5xF5), (D5xC25).1C2, (C5xD5).1C10, SmallGroup(500,15)

Series: Derived Chief Lower central Upper central

C1C5 — F5xC25
C1C5C52C5xD5D5xC25 — F5xC25
C5 — F5xC25
C1C25

Generators and relations for F5xC25
 G = < a,b,c | a25=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

Subgroups: 50 in 20 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C4, C5, C10, C20, F5, C25, C50, C100, C5xF5, F5xC25
5C2
4C5
5C4
5C10
4C25
5C20
5C50
5C100

Smallest permutation representation of F5xC25
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25)(26 41 31 46 36)(27 42 32 47 37)(28 43 33 48 38)(29 44 34 49 39)(30 45 35 50 40)(51 71 66 61 56)(52 72 67 62 57)(53 73 68 63 58)(54 74 69 64 59)(55 75 70 65 60)(76 86 96 81 91)(77 87 97 82 92)(78 88 98 83 93)(79 89 99 84 94)(80 90 100 85 95)
(1 42 60 77)(2 43 61 78)(3 44 62 79)(4 45 63 80)(5 46 64 81)(6 47 65 82)(7 48 66 83)(8 49 67 84)(9 50 68 85)(10 26 69 86)(11 27 70 87)(12 28 71 88)(13 29 72 89)(14 30 73 90)(15 31 74 91)(16 32 75 92)(17 33 51 93)(18 34 52 94)(19 35 53 95)(20 36 54 96)(21 37 55 97)(22 38 56 98)(23 39 57 99)(24 40 58 100)(25 41 59 76)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,41,31,46,36)(27,42,32,47,37)(28,43,33,48,38)(29,44,34,49,39)(30,45,35,50,40)(51,71,66,61,56)(52,72,67,62,57)(53,73,68,63,58)(54,74,69,64,59)(55,75,70,65,60)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,42,60,77)(2,43,61,78)(3,44,62,79)(4,45,63,80)(5,46,64,81)(6,47,65,82)(7,48,66,83)(8,49,67,84)(9,50,68,85)(10,26,69,86)(11,27,70,87)(12,28,71,88)(13,29,72,89)(14,30,73,90)(15,31,74,91)(16,32,75,92)(17,33,51,93)(18,34,52,94)(19,35,53,95)(20,36,54,96)(21,37,55,97)(22,38,56,98)(23,39,57,99)(24,40,58,100)(25,41,59,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,41,31,46,36)(27,42,32,47,37)(28,43,33,48,38)(29,44,34,49,39)(30,45,35,50,40)(51,71,66,61,56)(52,72,67,62,57)(53,73,68,63,58)(54,74,69,64,59)(55,75,70,65,60)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,42,60,77)(2,43,61,78)(3,44,62,79)(4,45,63,80)(5,46,64,81)(6,47,65,82)(7,48,66,83)(8,49,67,84)(9,50,68,85)(10,26,69,86)(11,27,70,87)(12,28,71,88)(13,29,72,89)(14,30,73,90)(15,31,74,91)(16,32,75,92)(17,33,51,93)(18,34,52,94)(19,35,53,95)(20,36,54,96)(21,37,55,97)(22,38,56,98)(23,39,57,99)(24,40,58,100)(25,41,59,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,6,11,16,21),(2,7,12,17,22),(3,8,13,18,23),(4,9,14,19,24),(5,10,15,20,25),(26,41,31,46,36),(27,42,32,47,37),(28,43,33,48,38),(29,44,34,49,39),(30,45,35,50,40),(51,71,66,61,56),(52,72,67,62,57),(53,73,68,63,58),(54,74,69,64,59),(55,75,70,65,60),(76,86,96,81,91),(77,87,97,82,92),(78,88,98,83,93),(79,89,99,84,94),(80,90,100,85,95)], [(1,42,60,77),(2,43,61,78),(3,44,62,79),(4,45,63,80),(5,46,64,81),(6,47,65,82),(7,48,66,83),(8,49,67,84),(9,50,68,85),(10,26,69,86),(11,27,70,87),(12,28,71,88),(13,29,72,89),(14,30,73,90),(15,31,74,91),(16,32,75,92),(17,33,51,93),(18,34,52,94),(19,35,53,95),(20,36,54,96),(21,37,55,97),(22,38,56,98),(23,39,57,99),(24,40,58,100),(25,41,59,76)]])

125 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5I10A10B10C10D20A···20H25A···25T25U···25AN50A···50T100A···100AN
order124455555···51010101020···2025···2525···2550···50100···100
size155511114···455555···51···14···45···55···5

125 irreducible representations

dim111111111444
type+++
imageC1C2C4C5C10C20C25C50C100F5C5xF5F5xC25
kernelF5xC25D5xC25C5xC25C5xF5C5xD5C52F5D5C5C25C5C1
# reps1124482020401420

Matrix representation of F5xC25 in GL4(F101) generated by

81000
08100
00810
00081
,
84000
09500
00870
00036
,
0010
0001
0100
1000
G:=sub<GL(4,GF(101))| [81,0,0,0,0,81,0,0,0,0,81,0,0,0,0,81],[84,0,0,0,0,95,0,0,0,0,87,0,0,0,0,36],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;

F5xC25 in GAP, Magma, Sage, TeX

F_5\times C_{25}
% in TeX

G:=Group("F5xC25");
// GroupNames label

G:=SmallGroup(500,15);
// by ID

G=gap.SmallGroup(500,15);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,106,5004,1014]);
// Polycyclic

G:=Group<a,b,c|a^25=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of F5xC25 in TeX

׿
x
:
Z
F
o
wr
Q
<