Copied to
clipboard

G = C8:C8order 64 = 26

3rd semidirect product of C8 and C8 acting via C8/C4=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C8:3C8, C4.9M4(2), C22.6C42, C42.91C22, (C2xC8).4C4, C2.1(C4xC8), C4.11(C2xC8), (C4xC8).13C2, C2.1(C8:C4), (C2xC4).78(C2xC4), SmallGroup(64,3)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C8:C8
C1C2C22C2xC4C42C4xC8 — C8:C8
C1C2 — C8:C8
C1C42 — C8:C8
C1C22C22C42 — C8:C8

Generators and relations for C8:C8
 G = < a,b | a8=b8=1, bab-1=a5 >

Subgroups: 37 in 33 conjugacy classes, 29 normal (7 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, C42, C2xC8, M4(2), C4xC8, C8:C4, C8:C8
2C8
2C8
2C8
2C8

Smallest permutation representation of C8:C8
Regular action on 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 17 46 39 25 56 9)(2 60 18 43 40 30 49 14)(3 57 19 48 33 27 50 11)(4 62 20 45 34 32 51 16)(5 59 21 42 35 29 52 13)(6 64 22 47 36 26 53 10)(7 61 23 44 37 31 54 15)(8 58 24 41 38 28 55 12)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,17,46,39,25,56,9)(2,60,18,43,40,30,49,14)(3,57,19,48,33,27,50,11)(4,62,20,45,34,32,51,16)(5,59,21,42,35,29,52,13)(6,64,22,47,36,26,53,10)(7,61,23,44,37,31,54,15)(8,58,24,41,38,28,55,12)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,17,46,39,25,56,9)(2,60,18,43,40,30,49,14)(3,57,19,48,33,27,50,11)(4,62,20,45,34,32,51,16)(5,59,21,42,35,29,52,13)(6,64,22,47,36,26,53,10)(7,61,23,44,37,31,54,15)(8,58,24,41,38,28,55,12) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,17,46,39,25,56,9),(2,60,18,43,40,30,49,14),(3,57,19,48,33,27,50,11),(4,62,20,45,34,32,51,16),(5,59,21,42,35,29,52,13),(6,64,22,47,36,26,53,10),(7,61,23,44,37,31,54,15),(8,58,24,41,38,28,55,12)]])

C8:C8 is a maximal subgroup of
C8xM4(2)  C82:C2  C8:9M4(2)  C23.27C42  C82:2C2  C8:6M4(2)  SD16:C8  Q16:5C8  D8:5C8  C8:9D8  C8:12SD16  C8:15SD16  C8:9Q16  D4.M4(2)  D4:2M4(2)  Q8.M4(2)  Q8:2M4(2)  C8:M4(2)  C8:3M4(2)  C8:5SD16  C8:6SD16  C8.9SD16  C42.664C23  C42.665C23  C42.666C23  C42.667C23  C8:3D8  C8.2D8  C8:3Q16
 C8p:C8: C16:C8  C24:C8  C40:8C8  C40:C8  C56:C8 ...
 C4p.M4(2): C8.32D8  C82:15C2  C8.M4(2)  C42.279D6  C42.279D10  C20.31M4(2)  C42.279D14 ...
C8:C8 is a maximal quotient of
C8:C16  C20.31M4(2)
 C8p:C8: C16:C8  C24:C8  C40:8C8  C40:C8  C56:C8 ...
 C42.D2p: C2.C82  C42.279D6  C42.279D10  C42.279D14 ...

40 conjugacy classes

class 1 2A2B2C4A···4L8A···8X
order12224···48···8
size11111···12···2

40 irreducible representations

dim11112
type++
imageC1C2C4C8M4(2)
kernelC8:C8C4xC8C2xC8C8C4
# reps1312168

Matrix representation of C8:C8 in GL3(F17) generated by

100
0515
0612
,
200
010
0516
G:=sub<GL(3,GF(17))| [1,0,0,0,5,6,0,15,12],[2,0,0,0,1,5,0,0,16] >;

C8:C8 in GAP, Magma, Sage, TeX

C_8\rtimes C_8
% in TeX

G:=Group("C8:C8");
// GroupNames label

G:=SmallGroup(64,3);
// by ID

G=gap.SmallGroup(64,3);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,2,24,217,55,86,117]);
// Polycyclic

G:=Group<a,b|a^8=b^8=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C8:C8 in TeX

׿
x
:
Z
F
o
wr
Q
<