extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC24).1C2 = Dic3:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).1C2 | 96,21 |
(C2xC24).2C2 = C2.Dic12 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).2C2 | 96,23 |
(C2xC24).3C2 = C3xQ8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).3C2 | 96,53 |
(C2xC24).4C2 = C3xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).4C2 | 96,55 |
(C2xC24).5C2 = C24:1C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).5C2 | 96,25 |
(C2xC24).6C2 = C2xDic12 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).6C2 | 96,112 |
(C2xC24).7C2 = C24.C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).7C2 | 96,26 |
(C2xC24).8C2 = C8:Dic3 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).8C2 | 96,24 |
(C2xC24).9C2 = C3xC2.D8 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).9C2 | 96,57 |
(C2xC24).10C2 = C6xQ16 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).10C2 | 96,181 |
(C2xC24).11C2 = C3xC8.C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).11C2 | 96,58 |
(C2xC24).12C2 = C2xC3:C16 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).12C2 | 96,18 |
(C2xC24).13C2 = C12.C8 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).13C2 | 96,19 |
(C2xC24).14C2 = C8xDic3 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).14C2 | 96,20 |
(C2xC24).15C2 = C24:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).15C2 | 96,22 |
(C2xC24).16C2 = C3xC4.Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).16C2 | 96,56 |
(C2xC24).17C2 = C3xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).17C2 | 96,47 |
(C2xC24).18C2 = C3xM5(2) | φ: C2/C1 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).18C2 | 96,60 |