Copied to
clipboard

G = C3xC4.Q8order 96 = 25·3

Direct product of C3 and C4.Q8

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xC4.Q8, C8:2C12, C24:6C4, C12.9Q8, C6.11SD16, C4:C4.2C6, (C2xC8).6C6, C4.1(C3xQ8), C4.6(C2xC12), (C2xC6).48D4, C6.12(C4:C4), (C2xC24).16C2, C12.43(C2xC4), C2.3(C3xSD16), C22.10(C3xD4), (C2xC12).117C22, C2.3(C3xC4:C4), (C3xC4:C4).9C2, (C2xC4).20(C2xC6), SmallGroup(96,56)

Series: Derived Chief Lower central Upper central

C1C4 — C3xC4.Q8
C1C2C22C2xC4C2xC12C3xC4:C4 — C3xC4.Q8
C1C2C4 — C3xC4.Q8
C1C2xC6C2xC12 — C3xC4.Q8

Generators and relations for C3xC4.Q8
 G = < a,b,c,d | a3=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 52 in 36 conjugacy classes, 28 normal (16 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, Q8, C12, C2xC6, C4:C4, SD16, C2xC12, C3xD4, C3xQ8, C4.Q8, C3xC4:C4, C3xSD16, C3xC4.Q8
4C4
4C4
2C2xC4
2C2xC4
4C12
4C12
2C2xC12
2C2xC12

Smallest permutation representation of C3xC4.Q8
Regular action on 96 points
Generators in S96
(1 38 11)(2 39 12)(3 40 13)(4 33 14)(5 34 15)(6 35 16)(7 36 9)(8 37 10)(17 53 41)(18 54 42)(19 55 43)(20 56 44)(21 49 45)(22 50 46)(23 51 47)(24 52 48)(25 91 71)(26 92 72)(27 93 65)(28 94 66)(29 95 67)(30 96 68)(31 89 69)(32 90 70)(57 74 85)(58 75 86)(59 76 87)(60 77 88)(61 78 81)(62 79 82)(63 80 83)(64 73 84)
(1 17 5 21)(2 18 6 22)(3 19 7 23)(4 20 8 24)(9 47 13 43)(10 48 14 44)(11 41 15 45)(12 42 16 46)(25 78 29 74)(26 79 30 75)(27 80 31 76)(28 73 32 77)(33 56 37 52)(34 49 38 53)(35 50 39 54)(36 51 40 55)(57 71 61 67)(58 72 62 68)(59 65 63 69)(60 66 64 70)(81 95 85 91)(82 96 86 92)(83 89 87 93)(84 90 88 94)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 65 23 61)(2 68 24 64)(3 71 17 59)(4 66 18 62)(5 69 19 57)(6 72 20 60)(7 67 21 63)(8 70 22 58)(9 95 45 83)(10 90 46 86)(11 93 47 81)(12 96 48 84)(13 91 41 87)(14 94 42 82)(15 89 43 85)(16 92 44 88)(25 53 76 40)(26 56 77 35)(27 51 78 38)(28 54 79 33)(29 49 80 36)(30 52 73 39)(31 55 74 34)(32 50 75 37)

G:=sub<Sym(96)| (1,38,11)(2,39,12)(3,40,13)(4,33,14)(5,34,15)(6,35,16)(7,36,9)(8,37,10)(17,53,41)(18,54,42)(19,55,43)(20,56,44)(21,49,45)(22,50,46)(23,51,47)(24,52,48)(25,91,71)(26,92,72)(27,93,65)(28,94,66)(29,95,67)(30,96,68)(31,89,69)(32,90,70)(57,74,85)(58,75,86)(59,76,87)(60,77,88)(61,78,81)(62,79,82)(63,80,83)(64,73,84), (1,17,5,21)(2,18,6,22)(3,19,7,23)(4,20,8,24)(9,47,13,43)(10,48,14,44)(11,41,15,45)(12,42,16,46)(25,78,29,74)(26,79,30,75)(27,80,31,76)(28,73,32,77)(33,56,37,52)(34,49,38,53)(35,50,39,54)(36,51,40,55)(57,71,61,67)(58,72,62,68)(59,65,63,69)(60,66,64,70)(81,95,85,91)(82,96,86,92)(83,89,87,93)(84,90,88,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,65,23,61)(2,68,24,64)(3,71,17,59)(4,66,18,62)(5,69,19,57)(6,72,20,60)(7,67,21,63)(8,70,22,58)(9,95,45,83)(10,90,46,86)(11,93,47,81)(12,96,48,84)(13,91,41,87)(14,94,42,82)(15,89,43,85)(16,92,44,88)(25,53,76,40)(26,56,77,35)(27,51,78,38)(28,54,79,33)(29,49,80,36)(30,52,73,39)(31,55,74,34)(32,50,75,37)>;

G:=Group( (1,38,11)(2,39,12)(3,40,13)(4,33,14)(5,34,15)(6,35,16)(7,36,9)(8,37,10)(17,53,41)(18,54,42)(19,55,43)(20,56,44)(21,49,45)(22,50,46)(23,51,47)(24,52,48)(25,91,71)(26,92,72)(27,93,65)(28,94,66)(29,95,67)(30,96,68)(31,89,69)(32,90,70)(57,74,85)(58,75,86)(59,76,87)(60,77,88)(61,78,81)(62,79,82)(63,80,83)(64,73,84), (1,17,5,21)(2,18,6,22)(3,19,7,23)(4,20,8,24)(9,47,13,43)(10,48,14,44)(11,41,15,45)(12,42,16,46)(25,78,29,74)(26,79,30,75)(27,80,31,76)(28,73,32,77)(33,56,37,52)(34,49,38,53)(35,50,39,54)(36,51,40,55)(57,71,61,67)(58,72,62,68)(59,65,63,69)(60,66,64,70)(81,95,85,91)(82,96,86,92)(83,89,87,93)(84,90,88,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,65,23,61)(2,68,24,64)(3,71,17,59)(4,66,18,62)(5,69,19,57)(6,72,20,60)(7,67,21,63)(8,70,22,58)(9,95,45,83)(10,90,46,86)(11,93,47,81)(12,96,48,84)(13,91,41,87)(14,94,42,82)(15,89,43,85)(16,92,44,88)(25,53,76,40)(26,56,77,35)(27,51,78,38)(28,54,79,33)(29,49,80,36)(30,52,73,39)(31,55,74,34)(32,50,75,37) );

G=PermutationGroup([[(1,38,11),(2,39,12),(3,40,13),(4,33,14),(5,34,15),(6,35,16),(7,36,9),(8,37,10),(17,53,41),(18,54,42),(19,55,43),(20,56,44),(21,49,45),(22,50,46),(23,51,47),(24,52,48),(25,91,71),(26,92,72),(27,93,65),(28,94,66),(29,95,67),(30,96,68),(31,89,69),(32,90,70),(57,74,85),(58,75,86),(59,76,87),(60,77,88),(61,78,81),(62,79,82),(63,80,83),(64,73,84)], [(1,17,5,21),(2,18,6,22),(3,19,7,23),(4,20,8,24),(9,47,13,43),(10,48,14,44),(11,41,15,45),(12,42,16,46),(25,78,29,74),(26,79,30,75),(27,80,31,76),(28,73,32,77),(33,56,37,52),(34,49,38,53),(35,50,39,54),(36,51,40,55),(57,71,61,67),(58,72,62,68),(59,65,63,69),(60,66,64,70),(81,95,85,91),(82,96,86,92),(83,89,87,93),(84,90,88,94)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,65,23,61),(2,68,24,64),(3,71,17,59),(4,66,18,62),(5,69,19,57),(6,72,20,60),(7,67,21,63),(8,70,22,58),(9,95,45,83),(10,90,46,86),(11,93,47,81),(12,96,48,84),(13,91,41,87),(14,94,42,82),(15,89,43,85),(16,92,44,88),(25,53,76,40),(26,56,77,35),(27,51,78,38),(28,54,79,33),(29,49,80,36),(30,52,73,39),(31,55,74,34),(32,50,75,37)]])

C3xC4.Q8 is a maximal subgroup of
C8.Dic6  D24:8C4  Dic3:8SD16  Dic12:9C4  Dic6:Q8  C24:5Q8  C24:3Q8  Dic6.Q8  C8.8Dic6  (S3xC8):C4  C8:(C4xS3)  D6.2SD16  D6.4SD16  C8:8D12  C24:7D4  C4.Q8:S3  C8.2D12  C6.(C4oD8)  D24:9C4  D12:Q8  D12.Q8  C12xSD16

42 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F6A···6F8A8B8C8D12A12B12C12D12E···12L24A···24H
order1222334444446···688881212121212···1224···24
size1111112244441···1222222224···42···2

42 irreducible representations

dim11111111222222
type+++-+
imageC1C2C2C3C4C6C6C12Q8D4SD16C3xQ8C3xD4C3xSD16
kernelC3xC4.Q8C3xC4:C4C2xC24C4.Q8C24C4:C4C2xC8C8C12C2xC6C6C4C22C2
# reps12124428114228

Matrix representation of C3xC4.Q8 in GL4(F73) generated by

64000
06400
00640
00064
,
1000
0100
00072
0010
,
27000
04600
00667
0066
,
0100
72000
001653
005357
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,0],[27,0,0,0,0,46,0,0,0,0,6,6,0,0,67,6],[0,72,0,0,1,0,0,0,0,0,16,53,0,0,53,57] >;

C3xC4.Q8 in GAP, Magma, Sage, TeX

C_3\times C_4.Q_8
% in TeX

G:=Group("C3xC4.Q8");
// GroupNames label

G:=SmallGroup(96,56);
// by ID

G=gap.SmallGroup(96,56);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,144,169,79,1443,117]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C3xC4.Q8 in TeX

׿
x
:
Z
F
o
wr
Q
<