Extensions 1→N→G→Q→1 with N=C2xD12 and Q=C2

Direct product G=NxQ with N=C2xD12 and Q=C2
dρLabelID
C22xD1248C2^2xD1296,207

Semidirect products G=N:Q with N=C2xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD12):1C2 = C4:D12φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):1C296,81
(C2xD12):2C2 = D6:D4φ: C2/C1C2 ⊆ Out C2xD1224(C2xD12):2C296,89
(C2xD12):3C2 = Dic3:D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):3C296,91
(C2xD12):4C2 = C12:D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):4C296,102
(C2xD12):5C2 = C2xD24φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):5C296,110
(C2xD12):6C2 = C12:7D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):6C296,137
(C2xD12):7C2 = C8:D6φ: C2/C1C2 ⊆ Out C2xD12244+(C2xD12):7C296,115
(C2xD12):8C2 = C2xD4:S3φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):8C296,138
(C2xD12):9C2 = C12:3D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):9C296,147
(C2xD12):10C2 = D4:D6φ: C2/C1C2 ⊆ Out C2xD12244+(C2xD12):10C296,156
(C2xD12):11C2 = C2xS3xD4φ: C2/C1C2 ⊆ Out C2xD1224(C2xD12):11C296,209
(C2xD12):12C2 = C2xQ8:3S3φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12):12C296,213
(C2xD12):13C2 = D4oD12φ: C2/C1C2 ⊆ Out C2xD12244+(C2xD12):13C296,216
(C2xD12):14C2 = C2xC4oD12φ: trivial image48(C2xD12):14C296,208

Non-split extensions G=N.Q with N=C2xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD12).1C2 = C2.D24φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).1C296,28
(C2xD12).2C2 = C42:7S3φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).2C296,82
(C2xD12).3C2 = D6.D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).3C296,101
(C2xD12).4C2 = C2xC24:C2φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).4C296,109
(C2xD12).5C2 = C6.D8φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).5C296,16
(C2xD12).6C2 = C12.46D4φ: C2/C1C2 ⊆ Out C2xD12244+(C2xD12).6C296,30
(C2xD12).7C2 = Dic3:5D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).7C296,100
(C2xD12).8C2 = C2xQ8:2S3φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).8C296,148
(C2xD12).9C2 = C12.23D4φ: C2/C1C2 ⊆ Out C2xD1248(C2xD12).9C296,154
(C2xD12).10C2 = C4xD12φ: trivial image48(C2xD12).10C296,80

׿
x
:
Z
F
o
wr
Q
<