Copied to
clipboard

G = C12:D4order 96 = 25·3

1st semidirect product of C12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:2D4, C4:2D12, C12:1D4, C4:C4:3S3, D6:C4:8C2, C6.7(C2xD4), (C2xD12):4C2, C3:2(C4:D4), (C2xC4).12D6, C2.13(S3xD4), C2.9(C2xD12), C6.34(C4oD4), (C2xC6).36C23, (C2xC12).5C22, C2.6(Q8:3S3), (C22xS3).7C22, C22.50(C22xS3), (C2xDic3).31C22, (S3xC2xC4):1C2, (C3xC4:C4):6C2, SmallGroup(96,102)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C12:D4
C1C3C6C2xC6C22xS3S3xC2xC4 — C12:D4
C3C2xC6 — C12:D4
C1C22C4:C4

Generators and relations for C12:D4
 G = < a,b,c | a12=b4=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >

Subgroups: 266 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, D6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C22xS3, C22xS3, C4:D4, D6:C4, C3xC4:C4, S3xC2xC4, C2xD12, C2xD12, C12:D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C22xS3, C4:D4, C2xD12, S3xD4, Q8:3S3, C12:D4

Character table of C12:D4

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C12A12B12C12D12E12F
 size 11116612122224466222444444
ρ1111111111111111111111111    trivial
ρ2111111-1-1111-1-1111111-11-1-1-1    linear of order 2
ρ31111-1-1-1-111111-1-1111111111    linear of order 2
ρ41111-1-111111-1-1-1-11111-11-1-1-1    linear of order 2
ρ51111-1-1-111-1-1-1111111-1-1-1-111    linear of order 2
ρ61111-1-11-11-1-11-111111-11-11-1-1    linear of order 2
ρ71111111-11-1-1-11-1-1111-1-1-1-111    linear of order 2
ρ8111111-111-1-11-1-1-1111-11-11-1-1    linear of order 2
ρ922220000-122-2-200-1-1-1-11-1111    orthogonal lifted from D6
ρ1022220000-1-2-22-200-1-1-11-11-111    orthogonal lifted from D6
ρ112-2-22000022-20000-22-220-2000    orthogonal lifted from D4
ρ122-22-2-22002000000-2-22000000    orthogonal lifted from D4
ρ1322220000-1222200-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422220000-1-2-2-2200-1-1-11111-1-1    orthogonal lifted from D6
ρ152-22-22-2002000000-2-22000000    orthogonal lifted from D4
ρ162-2-2200002-220000-22-2-202000    orthogonal lifted from D4
ρ172-2-220000-1-2200001-111-3-13-33    orthogonal lifted from D12
ρ182-2-220000-1-2200001-1113-1-33-3    orthogonal lifted from D12
ρ192-2-220000-12-200001-11-1-3133-3    orthogonal lifted from D12
ρ202-2-220000-12-200001-11-131-3-33    orthogonal lifted from D12
ρ2122-2-20000200002i-2i2-2-2000000    complex lifted from C4oD4
ρ2222-2-2000020000-2i2i2-2-2000000    complex lifted from C4oD4
ρ234-44-40000-200000022-2000000    orthogonal lifted from S3xD4
ρ2444-4-40000-2000000-222000000    orthogonal lifted from Q8:3S3, Schur index 2

Smallest permutation representation of C12:D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 22 33)(2 42 23 28)(3 37 24 35)(4 44 13 30)(5 39 14 25)(6 46 15 32)(7 41 16 27)(8 48 17 34)(9 43 18 29)(10 38 19 36)(11 45 20 31)(12 40 21 26)
(1 22)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)(11 24)(12 23)(25 29)(26 28)(30 36)(31 35)(32 34)(37 45)(38 44)(39 43)(40 42)(46 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,22,33)(2,42,23,28)(3,37,24,35)(4,44,13,30)(5,39,14,25)(6,46,15,32)(7,41,16,27)(8,48,17,34)(9,43,18,29)(10,38,19,36)(11,45,20,31)(12,40,21,26), (1,22)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(11,24)(12,23)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,22,33)(2,42,23,28)(3,37,24,35)(4,44,13,30)(5,39,14,25)(6,46,15,32)(7,41,16,27)(8,48,17,34)(9,43,18,29)(10,38,19,36)(11,45,20,31)(12,40,21,26), (1,22)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(11,24)(12,23)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,22,33),(2,42,23,28),(3,37,24,35),(4,44,13,30),(5,39,14,25),(6,46,15,32),(7,41,16,27),(8,48,17,34),(9,43,18,29),(10,38,19,36),(11,45,20,31),(12,40,21,26)], [(1,22),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,24),(12,23),(25,29),(26,28),(30,36),(31,35),(32,34),(37,45),(38,44),(39,43),(40,42),(46,48)]])

C12:D4 is a maximal subgroup of
D4:D12  D6:D8  D4:3D12  C3:C8:D4  Q8:3D12  D6:2SD16  Q8:4D12  C3:(C8:D4)  D6.4SD16  C8:8D12  C24:7D4  C4.Q8:S3  D6.5D8  D6:2D8  C2.D8:S3  C8:3D12  C6.2- 1+4  C6.2+ 1+4  C6.112+ 1+4  C42:10D6  C42:11D6  C42.95D6  C42.97D6  C42.228D6  D4xD12  D4:5D12  C42.116D6  Q8:6D12  Q8:7D12  C42.131D6  C42.133D6  Dic6:20D4  S3xC4:D4  C6.382+ 1+4  D12:19D4  C4:C4:26D6  C6.172- 1+4  D12:21D4  Dic6:22D4  C6.562+ 1+4  C6.592+ 1+4  C6.1202+ 1+4  C6.1212+ 1+4  C6.662+ 1+4  C6.682+ 1+4  C42.237D6  C42.150D6  C42.153D6  C42.155D6  C42.158D6  C42:25D6  C42.163D6  C42:27D6  C42.240D6  D12:12D4  C42.178D6  C42.179D6  C4:D36  Dic3:D12  C12:7D12  Dic3:3D12  C12:2D12  C12:3D12  Dic5:D12  D30:D4  C60:6D4  C20:2D12  C4:D60
C12:D4 is a maximal quotient of
(C22xC4).85D6  (C2xC4):9D12  D6:C4:3C4  (C2xC12):5D4  C6.C22wrC2  (C2xC4).21D12  C12:SD16  C4:D24  D12.19D4  C42.36D6  Dic6:8D4  C4:Dic12  C8:8D12  C24:7D4  C8.2D12  D6:2D8  C8:3D12  D6:2Q16  C24.18D4  C24.19D4  C24.42D4  C4:C4:6Dic3  C4:(D6:C4)  (C2xD12):10C4  (C2xC4):3D12  (C2xC12).56D4  C4:D36  Dic3:D12  C12:7D12  Dic3:3D12  C12:2D12  C12:3D12  Dic5:D12  D30:D4  C60:6D4  C20:2D12  C4:D60

Matrix representation of C12:D4 in GL4(F13) generated by

11200
1000
00111
00112
,
3700
61000
00120
00121
,
0100
1000
0010
00112
G:=sub<GL(4,GF(13))| [1,1,0,0,12,0,0,0,0,0,1,1,0,0,11,12],[3,6,0,0,7,10,0,0,0,0,12,12,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,12] >;

C12:D4 in GAP, Magma, Sage, TeX

C_{12}\rtimes D_4
% in TeX

G:=Group("C12:D4");
// GroupNames label

G:=SmallGroup(96,102);
// by ID

G=gap.SmallGroup(96,102);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,50,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C12:D4 in TeX

׿
x
:
Z
F
o
wr
Q
<