Copied to
clipboard

G = C4xDic7order 112 = 24·7

Direct product of C4 and Dic7

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xDic7, C7:C42, C28:2C4, C22.3D14, (C2xC4).6D7, C2.2(C4xD7), C14.3(C2xC4), (C2xC28).7C2, C2.2(C2xDic7), (C2xC14).3C22, (C2xDic7).4C2, SmallGroup(112,10)

Series: Derived Chief Lower central Upper central

C1C7 — C4xDic7
C1C7C14C2xC14C2xDic7 — C4xDic7
C7 — C4xDic7
C1C2xC4

Generators and relations for C4xDic7
 G = < a,b,c | a4=b14=1, c2=b7, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 72 in 30 conjugacy classes, 23 normal (9 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D7, C42, Dic7, D14, C4xD7, C2xDic7, C4xDic7
7C4
7C4
7C4
7C4
7C2xC4
7C2xC4
7C42

Smallest permutation representation of C4xDic7
Regular action on 112 points
Generators in S112
(1 105 43 90)(2 106 44 91)(3 107 45 92)(4 108 46 93)(5 109 47 94)(6 110 48 95)(7 111 49 96)(8 112 50 97)(9 99 51 98)(10 100 52 85)(11 101 53 86)(12 102 54 87)(13 103 55 88)(14 104 56 89)(15 69 32 72)(16 70 33 73)(17 57 34 74)(18 58 35 75)(19 59 36 76)(20 60 37 77)(21 61 38 78)(22 62 39 79)(23 63 40 80)(24 64 41 81)(25 65 42 82)(26 66 29 83)(27 67 30 84)(28 68 31 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 57 8 64)(2 70 9 63)(3 69 10 62)(4 68 11 61)(5 67 12 60)(6 66 13 59)(7 65 14 58)(15 85 22 92)(16 98 23 91)(17 97 24 90)(18 96 25 89)(19 95 26 88)(20 94 27 87)(21 93 28 86)(29 103 36 110)(30 102 37 109)(31 101 38 108)(32 100 39 107)(33 99 40 106)(34 112 41 105)(35 111 42 104)(43 74 50 81)(44 73 51 80)(45 72 52 79)(46 71 53 78)(47 84 54 77)(48 83 55 76)(49 82 56 75)

G:=sub<Sym(112)| (1,105,43,90)(2,106,44,91)(3,107,45,92)(4,108,46,93)(5,109,47,94)(6,110,48,95)(7,111,49,96)(8,112,50,97)(9,99,51,98)(10,100,52,85)(11,101,53,86)(12,102,54,87)(13,103,55,88)(14,104,56,89)(15,69,32,72)(16,70,33,73)(17,57,34,74)(18,58,35,75)(19,59,36,76)(20,60,37,77)(21,61,38,78)(22,62,39,79)(23,63,40,80)(24,64,41,81)(25,65,42,82)(26,66,29,83)(27,67,30,84)(28,68,31,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,8,64)(2,70,9,63)(3,69,10,62)(4,68,11,61)(5,67,12,60)(6,66,13,59)(7,65,14,58)(15,85,22,92)(16,98,23,91)(17,97,24,90)(18,96,25,89)(19,95,26,88)(20,94,27,87)(21,93,28,86)(29,103,36,110)(30,102,37,109)(31,101,38,108)(32,100,39,107)(33,99,40,106)(34,112,41,105)(35,111,42,104)(43,74,50,81)(44,73,51,80)(45,72,52,79)(46,71,53,78)(47,84,54,77)(48,83,55,76)(49,82,56,75)>;

G:=Group( (1,105,43,90)(2,106,44,91)(3,107,45,92)(4,108,46,93)(5,109,47,94)(6,110,48,95)(7,111,49,96)(8,112,50,97)(9,99,51,98)(10,100,52,85)(11,101,53,86)(12,102,54,87)(13,103,55,88)(14,104,56,89)(15,69,32,72)(16,70,33,73)(17,57,34,74)(18,58,35,75)(19,59,36,76)(20,60,37,77)(21,61,38,78)(22,62,39,79)(23,63,40,80)(24,64,41,81)(25,65,42,82)(26,66,29,83)(27,67,30,84)(28,68,31,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,57,8,64)(2,70,9,63)(3,69,10,62)(4,68,11,61)(5,67,12,60)(6,66,13,59)(7,65,14,58)(15,85,22,92)(16,98,23,91)(17,97,24,90)(18,96,25,89)(19,95,26,88)(20,94,27,87)(21,93,28,86)(29,103,36,110)(30,102,37,109)(31,101,38,108)(32,100,39,107)(33,99,40,106)(34,112,41,105)(35,111,42,104)(43,74,50,81)(44,73,51,80)(45,72,52,79)(46,71,53,78)(47,84,54,77)(48,83,55,76)(49,82,56,75) );

G=PermutationGroup([[(1,105,43,90),(2,106,44,91),(3,107,45,92),(4,108,46,93),(5,109,47,94),(6,110,48,95),(7,111,49,96),(8,112,50,97),(9,99,51,98),(10,100,52,85),(11,101,53,86),(12,102,54,87),(13,103,55,88),(14,104,56,89),(15,69,32,72),(16,70,33,73),(17,57,34,74),(18,58,35,75),(19,59,36,76),(20,60,37,77),(21,61,38,78),(22,62,39,79),(23,63,40,80),(24,64,41,81),(25,65,42,82),(26,66,29,83),(27,67,30,84),(28,68,31,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,57,8,64),(2,70,9,63),(3,69,10,62),(4,68,11,61),(5,67,12,60),(6,66,13,59),(7,65,14,58),(15,85,22,92),(16,98,23,91),(17,97,24,90),(18,96,25,89),(19,95,26,88),(20,94,27,87),(21,93,28,86),(29,103,36,110),(30,102,37,109),(31,101,38,108),(32,100,39,107),(33,99,40,106),(34,112,41,105),(35,111,42,104),(43,74,50,81),(44,73,51,80),(45,72,52,79),(46,71,53,78),(47,84,54,77),(48,83,55,76),(49,82,56,75)]])

C4xDic7 is a maximal subgroup of
Dic7:C8  C56:C4  D28:4C4  D4:2Dic7  D7xC42  C42:D7  C23.11D14  C23.D14  Dic7:4D4  Dic7.D4  Dic7:3Q8  C28:Q8  Dic7.Q8  C28.3Q8  C4:C4:7D7  D28:C4  C4:C4:D7  C23.21D14  C28.17D4  C28:D4  Dic7:Q8  C28.23D4
C4xDic7 is a maximal quotient of
C42.D7  C56:C4  C14.C42

40 conjugacy classes

class 1 2A2B2C4A4B4C4D4E···4L7A7B7C14A···14I28A···28L
order122244444···477714···1428···28
size111111117···72222···22···2

40 irreducible representations

dim111112222
type++++-+
imageC1C2C2C4C4D7Dic7D14C4xD7
kernelC4xDic7C2xDic7C2xC28Dic7C28C2xC4C4C22C2
# reps1218436312

Matrix representation of C4xDic7 in GL3(F29) generated by

100
0120
0012
,
2800
001
0283
,
1200
052
01724
G:=sub<GL(3,GF(29))| [1,0,0,0,12,0,0,0,12],[28,0,0,0,0,28,0,1,3],[12,0,0,0,5,17,0,2,24] >;

C4xDic7 in GAP, Magma, Sage, TeX

C_4\times {\rm Dic}_7
% in TeX

G:=Group("C4xDic7");
// GroupNames label

G:=SmallGroup(112,10);
// by ID

G=gap.SmallGroup(112,10);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,20,46,2404]);
// Polycyclic

G:=Group<a,b,c|a^4=b^14=1,c^2=b^7,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xDic7 in TeX

׿
x
:
Z
F
o
wr
Q
<