p-group, cyclic, elementary abelian, simple, monomial
Aliases: C19, also denoted Z19, SmallGroup(19,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C19 |
C1 — C19 |
C1 — C19 |
C1 — C19 |
Generators and relations for C19
G = < a | a19=1 >
Character table of C19
class | 1 | 19A | 19B | 19C | 19D | 19E | 19F | 19G | 19H | 19I | 19J | 19K | 19L | 19M | 19N | 19O | 19P | 19Q | 19R | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ1918 | ζ192 | ζ193 | ζ194 | ζ195 | ζ196 | ζ197 | ζ198 | ζ199 | ζ1910 | ζ1911 | ζ1912 | ζ1913 | ζ1914 | ζ1915 | ζ1916 | ζ1917 | ζ19 | linear of order 19 faithful |
ρ3 | 1 | ζ1917 | ζ194 | ζ196 | ζ198 | ζ1910 | ζ1912 | ζ1914 | ζ1916 | ζ1918 | ζ19 | ζ193 | ζ195 | ζ197 | ζ199 | ζ1911 | ζ1913 | ζ1915 | ζ192 | linear of order 19 faithful |
ρ4 | 1 | ζ1916 | ζ196 | ζ199 | ζ1912 | ζ1915 | ζ1918 | ζ192 | ζ195 | ζ198 | ζ1911 | ζ1914 | ζ1917 | ζ19 | ζ194 | ζ197 | ζ1910 | ζ1913 | ζ193 | linear of order 19 faithful |
ρ5 | 1 | ζ1915 | ζ198 | ζ1912 | ζ1916 | ζ19 | ζ195 | ζ199 | ζ1913 | ζ1917 | ζ192 | ζ196 | ζ1910 | ζ1914 | ζ1918 | ζ193 | ζ197 | ζ1911 | ζ194 | linear of order 19 faithful |
ρ6 | 1 | ζ1914 | ζ1910 | ζ1915 | ζ19 | ζ196 | ζ1911 | ζ1916 | ζ192 | ζ197 | ζ1912 | ζ1917 | ζ193 | ζ198 | ζ1913 | ζ1918 | ζ194 | ζ199 | ζ195 | linear of order 19 faithful |
ρ7 | 1 | ζ1913 | ζ1912 | ζ1918 | ζ195 | ζ1911 | ζ1917 | ζ194 | ζ1910 | ζ1916 | ζ193 | ζ199 | ζ1915 | ζ192 | ζ198 | ζ1914 | ζ19 | ζ197 | ζ196 | linear of order 19 faithful |
ρ8 | 1 | ζ1912 | ζ1914 | ζ192 | ζ199 | ζ1916 | ζ194 | ζ1911 | ζ1918 | ζ196 | ζ1913 | ζ19 | ζ198 | ζ1915 | ζ193 | ζ1910 | ζ1917 | ζ195 | ζ197 | linear of order 19 faithful |
ρ9 | 1 | ζ1911 | ζ1916 | ζ195 | ζ1913 | ζ192 | ζ1910 | ζ1918 | ζ197 | ζ1915 | ζ194 | ζ1912 | ζ19 | ζ199 | ζ1917 | ζ196 | ζ1914 | ζ193 | ζ198 | linear of order 19 faithful |
ρ10 | 1 | ζ1910 | ζ1918 | ζ198 | ζ1917 | ζ197 | ζ1916 | ζ196 | ζ1915 | ζ195 | ζ1914 | ζ194 | ζ1913 | ζ193 | ζ1912 | ζ192 | ζ1911 | ζ19 | ζ199 | linear of order 19 faithful |
ρ11 | 1 | ζ199 | ζ19 | ζ1911 | ζ192 | ζ1912 | ζ193 | ζ1913 | ζ194 | ζ1914 | ζ195 | ζ1915 | ζ196 | ζ1916 | ζ197 | ζ1917 | ζ198 | ζ1918 | ζ1910 | linear of order 19 faithful |
ρ12 | 1 | ζ198 | ζ193 | ζ1914 | ζ196 | ζ1917 | ζ199 | ζ19 | ζ1912 | ζ194 | ζ1915 | ζ197 | ζ1918 | ζ1910 | ζ192 | ζ1913 | ζ195 | ζ1916 | ζ1911 | linear of order 19 faithful |
ρ13 | 1 | ζ197 | ζ195 | ζ1917 | ζ1910 | ζ193 | ζ1915 | ζ198 | ζ19 | ζ1913 | ζ196 | ζ1918 | ζ1911 | ζ194 | ζ1916 | ζ199 | ζ192 | ζ1914 | ζ1912 | linear of order 19 faithful |
ρ14 | 1 | ζ196 | ζ197 | ζ19 | ζ1914 | ζ198 | ζ192 | ζ1915 | ζ199 | ζ193 | ζ1916 | ζ1910 | ζ194 | ζ1917 | ζ1911 | ζ195 | ζ1918 | ζ1912 | ζ1913 | linear of order 19 faithful |
ρ15 | 1 | ζ195 | ζ199 | ζ194 | ζ1918 | ζ1913 | ζ198 | ζ193 | ζ1917 | ζ1912 | ζ197 | ζ192 | ζ1916 | ζ1911 | ζ196 | ζ19 | ζ1915 | ζ1910 | ζ1914 | linear of order 19 faithful |
ρ16 | 1 | ζ194 | ζ1911 | ζ197 | ζ193 | ζ1918 | ζ1914 | ζ1910 | ζ196 | ζ192 | ζ1917 | ζ1913 | ζ199 | ζ195 | ζ19 | ζ1916 | ζ1912 | ζ198 | ζ1915 | linear of order 19 faithful |
ρ17 | 1 | ζ193 | ζ1913 | ζ1910 | ζ197 | ζ194 | ζ19 | ζ1917 | ζ1914 | ζ1911 | ζ198 | ζ195 | ζ192 | ζ1918 | ζ1915 | ζ1912 | ζ199 | ζ196 | ζ1916 | linear of order 19 faithful |
ρ18 | 1 | ζ192 | ζ1915 | ζ1913 | ζ1911 | ζ199 | ζ197 | ζ195 | ζ193 | ζ19 | ζ1918 | ζ1916 | ζ1914 | ζ1912 | ζ1910 | ζ198 | ζ196 | ζ194 | ζ1917 | linear of order 19 faithful |
ρ19 | 1 | ζ19 | ζ1917 | ζ1916 | ζ1915 | ζ1914 | ζ1913 | ζ1912 | ζ1911 | ζ1910 | ζ199 | ζ198 | ζ197 | ζ196 | ζ195 | ζ194 | ζ193 | ζ192 | ζ1918 | linear of order 19 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
G:=sub<Sym(19)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)]])
G:=TransitiveGroup(19,1);
C19 is a maximal subgroup of
D19 C19⋊C3 C361
C19 is a maximal quotient of C361
Matrix representation of C19 ►in GL1(𝔽191) generated by
150 |
G:=sub<GL(1,GF(191))| [150] >;
C19 in GAP, Magma, Sage, TeX
C_{19}
% in TeX
G:=Group("C19");
// GroupNames label
G:=SmallGroup(19,1);
// by ID
G=gap.SmallGroup(19,1);
# by ID
G:=PCGroup([1,-19]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^19=1>;
// generators/relations
Export
Subgroup lattice of C19 in TeX
Character table of C19 in TeX