extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4.4D4)⋊1C2 = C42.129D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):1C2 | 128,735 |
(C2×C4.4D4)⋊2C2 = C42⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):2C2 | 128,736 |
(C2×C4.4D4)⋊3C2 = (C22×D8).C2 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):3C2 | 128,744 |
(C2×C4.4D4)⋊4C2 = C23.326C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):4C2 | 128,1158 |
(C2×C4.4D4)⋊5C2 = C23.327C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):5C2 | 128,1159 |
(C2×C4.4D4)⋊6C2 = C23.331C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):6C2 | 128,1163 |
(C2×C4.4D4)⋊7C2 = C24.264C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):7C2 | 128,1164 |
(C2×C4.4D4)⋊8C2 = C23.335C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):8C2 | 128,1167 |
(C2×C4.4D4)⋊9C2 = C24.565C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):9C2 | 128,1168 |
(C2×C4.4D4)⋊10C2 = C24.280C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):10C2 | 128,1191 |
(C2×C4.4D4)⋊11C2 = C23.361C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):11C2 | 128,1193 |
(C2×C4.4D4)⋊12C2 = C23.372C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):12C2 | 128,1204 |
(C2×C4.4D4)⋊13C2 = C23.391C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):13C2 | 128,1223 |
(C2×C4.4D4)⋊14C2 = C42⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):14C2 | 128,1272 |
(C2×C4.4D4)⋊15C2 = C42⋊21D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):15C2 | 128,1276 |
(C2×C4.4D4)⋊16C2 = C42.171D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):16C2 | 128,1280 |
(C2×C4.4D4)⋊17C2 = C23.455C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):17C2 | 128,1287 |
(C2×C4.4D4)⋊18C2 = C23.457C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):18C2 | 128,1289 |
(C2×C4.4D4)⋊19C2 = C42⋊26D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):19C2 | 128,1342 |
(C2×C4.4D4)⋊20C2 = C42⋊28D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):20C2 | 128,1352 |
(C2×C4.4D4)⋊21C2 = C42⋊29D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):21C2 | 128,1363 |
(C2×C4.4D4)⋊22C2 = C42⋊31D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):22C2 | 128,1389 |
(C2×C4.4D4)⋊23C2 = C42⋊32D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):23C2 | 128,1394 |
(C2×C4.4D4)⋊24C2 = C23.570C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):24C2 | 128,1402 |
(C2×C4.4D4)⋊25C2 = C23.572C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):25C2 | 128,1404 |
(C2×C4.4D4)⋊26C2 = C23.576C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):26C2 | 128,1408 |
(C2×C4.4D4)⋊27C2 = C23.584C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):27C2 | 128,1416 |
(C2×C4.4D4)⋊28C2 = C24.393C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):28C2 | 128,1418 |
(C2×C4.4D4)⋊29C2 = C24.412C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):29C2 | 128,1442 |
(C2×C4.4D4)⋊30C2 = C23.612C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):30C2 | 128,1444 |
(C2×C4.4D4)⋊31C2 = C24.422C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):31C2 | 128,1462 |
(C2×C4.4D4)⋊32C2 = C23.633C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):32C2 | 128,1465 |
(C2×C4.4D4)⋊33C2 = C42⋊34D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):33C2 | 128,1551 |
(C2×C4.4D4)⋊34C2 = C42⋊46D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):34C2 | 128,1582 |
(C2×C4.4D4)⋊35C2 = C43⋊12C2 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):35C2 | 128,1590 |
(C2×C4.4D4)⋊36C2 = C2×D4.9D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):36C2 | 128,1747 |
(C2×C4.4D4)⋊37C2 = C2×D4.8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):37C2 | 128,1748 |
(C2×C4.4D4)⋊38C2 = C2×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):38C2 | 128,1763 |
(C2×C4.4D4)⋊39C2 = C42.446D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):39C2 | 128,1772 |
(C2×C4.4D4)⋊40C2 = C2×C8.12D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):40C2 | 128,1878 |
(C2×C4.4D4)⋊41C2 = C2×C8⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):41C2 | 128,1880 |
(C2×C4.4D4)⋊42C2 = M4(2)⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):42C2 | 128,1885 |
(C2×C4.4D4)⋊43C2 = C42.269D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):43C2 | 128,1943 |
(C2×C4.4D4)⋊44C2 = C42.271D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):44C2 | 128,1945 |
(C2×C4.4D4)⋊45C2 = C2×C22.29C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):45C2 | 128,2178 |
(C2×C4.4D4)⋊46C2 = C2×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):46C2 | 128,2179 |
(C2×C4.4D4)⋊47C2 = C2×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):47C2 | 128,2182 |
(C2×C4.4D4)⋊48C2 = C2×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):48C2 | 128,2186 |
(C2×C4.4D4)⋊49C2 = C2×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):49C2 | 128,2195 |
(C2×C4.4D4)⋊50C2 = C2×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):50C2 | 128,2197 |
(C2×C4.4D4)⋊51C2 = C2×C22.45C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):51C2 | 128,2201 |
(C2×C4.4D4)⋊52C2 = C2×C22.49C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):52C2 | 128,2205 |
(C2×C4.4D4)⋊53C2 = C2×C22.53C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):53C2 | 128,2211 |
(C2×C4.4D4)⋊54C2 = C22.89C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):54C2 | 128,2232 |
(C2×C4.4D4)⋊55C2 = C22.99C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):55C2 | 128,2242 |
(C2×C4.4D4)⋊56C2 = C22.103C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):56C2 | 128,2246 |
(C2×C4.4D4)⋊57C2 = C2×C24⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):57C2 | 128,2258 |
(C2×C4.4D4)⋊58C2 = C2×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 64 | | (C2xC4.4D4):58C2 | 128,2259 |
(C2×C4.4D4)⋊59C2 = C22.134C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):59C2 | 128,2277 |
(C2×C4.4D4)⋊60C2 = C22.147C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):60C2 | 128,2290 |
(C2×C4.4D4)⋊61C2 = C22.150C25 | φ: C2/C1 → C2 ⊆ Out C2×C4.4D4 | 32 | | (C2xC4.4D4):61C2 | 128,2293 |
(C2×C4.4D4)⋊62C2 = C2×C23.36C23 | φ: trivial image | 64 | | (C2xC4.4D4):62C2 | 128,2171 |
(C2×C4.4D4)⋊63C2 = C2×C22.26C24 | φ: trivial image | 64 | | (C2xC4.4D4):63C2 | 128,2174 |