direct product, p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C2×C8⋊3D4, C42.245D4, C42.370C23, C8⋊7(C2×D4), (C2×C8)⋊15D4, C4.6(C22×D4), (C2×D8)⋊50C22, (C22×D8)⋊18C2, C8⋊C4⋊44C22, C4.15(C4⋊1D4), C4⋊1D4⋊37C22, (C2×C8).264C23, (C2×C4).346C24, (C22×SD16)⋊4C2, C23.880(C2×D4), (C22×C4).465D4, (C2×SD16)⋊58C22, (C2×D4).112C23, C4.4D4⋊57C22, (C2×Q8).100C23, C22.51(C4⋊1D4), (C2×C42).852C22, (C22×C8).268C22, C22.606(C22×D4), C22.125(C8⋊C22), (C22×C4).1561C23, (C22×D4).374C22, (C22×Q8).307C22, (C2×C8⋊C4)⋊8C2, (C2×C4⋊1D4)⋊18C2, (C2×C4).856(C2×D4), C2.25(C2×C4⋊1D4), C2.41(C2×C8⋊C22), (C2×C4.4D4)⋊41C2, SmallGroup(128,1880)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 804 in 334 conjugacy classes, 116 normal (14 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×4], C4 [×6], C22, C22 [×6], C22 [×30], C8 [×8], C2×C4 [×2], C2×C4 [×8], C2×C4 [×8], D4 [×34], Q8 [×6], C23, C23 [×24], C42 [×4], C22⋊C4 [×8], C2×C8 [×12], D8 [×16], SD16 [×16], C22×C4, C22×C4 [×2], C22×C4, C2×D4 [×6], C2×D4 [×31], C2×Q8 [×2], C2×Q8 [×5], C24 [×3], C8⋊C4 [×4], C2×C42, C2×C22⋊C4 [×2], C4.4D4 [×4], C4.4D4 [×2], C4⋊1D4 [×4], C4⋊1D4 [×2], C22×C8 [×2], C2×D8 [×8], C2×D8 [×8], C2×SD16 [×8], C2×SD16 [×8], C22×D4, C22×D4 [×2], C22×D4 [×2], C22×Q8, C2×C8⋊C4, C8⋊3D4 [×8], C2×C4.4D4, C2×C4⋊1D4, C22×D8 [×2], C22×SD16 [×2], C2×C8⋊3D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], C2×D4 [×18], C24, C4⋊1D4 [×4], C8⋊C22 [×4], C22×D4 [×3], C8⋊3D4 [×4], C2×C4⋊1D4, C2×C8⋊C22 [×2], C2×C8⋊3D4
Generators and relations
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 49)(8 50)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(25 44)(26 45)(27 46)(28 47)(29 48)(30 41)(31 42)(32 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 23 30)(2 60 24 27)(3 57 17 32)(4 62 18 29)(5 59 19 26)(6 64 20 31)(7 61 21 28)(8 58 22 25)(9 39 45 55)(10 36 46 52)(11 33 47 49)(12 38 48 54)(13 35 41 51)(14 40 42 56)(15 37 43 53)(16 34 44 50)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 50)(7 49)(8 56)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 32)(16 31)(17 37)(18 36)(19 35)(20 34)(21 33)(22 40)(23 39)(24 38)(41 59)(42 58)(43 57)(44 64)(45 63)(46 62)(47 61)(48 60)
G:=sub<Sym(64)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,23,30)(2,60,24,27)(3,57,17,32)(4,62,18,29)(5,59,19,26)(6,64,20,31)(7,61,21,28)(8,58,22,25)(9,39,45,55)(10,36,46,52)(11,33,47,49)(12,38,48,54)(13,35,41,51)(14,40,42,56)(15,37,43,53)(16,34,44,50), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,56)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,32)(16,31)(17,37)(18,36)(19,35)(20,34)(21,33)(22,40)(23,39)(24,38)(41,59)(42,58)(43,57)(44,64)(45,63)(46,62)(47,61)(48,60)>;
G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,23,30)(2,60,24,27)(3,57,17,32)(4,62,18,29)(5,59,19,26)(6,64,20,31)(7,61,21,28)(8,58,22,25)(9,39,45,55)(10,36,46,52)(11,33,47,49)(12,38,48,54)(13,35,41,51)(14,40,42,56)(15,37,43,53)(16,34,44,50), (1,55)(2,54)(3,53)(4,52)(5,51)(6,50)(7,49)(8,56)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,32)(16,31)(17,37)(18,36)(19,35)(20,34)(21,33)(22,40)(23,39)(24,38)(41,59)(42,58)(43,57)(44,64)(45,63)(46,62)(47,61)(48,60) );
G=PermutationGroup([(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,49),(8,50),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(25,44),(26,45),(27,46),(28,47),(29,48),(30,41),(31,42),(32,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,23,30),(2,60,24,27),(3,57,17,32),(4,62,18,29),(5,59,19,26),(6,64,20,31),(7,61,21,28),(8,58,22,25),(9,39,45,55),(10,36,46,52),(11,33,47,49),(12,38,48,54),(13,35,41,51),(14,40,42,56),(15,37,43,53),(16,34,44,50)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,50),(7,49),(8,56),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,32),(16,31),(17,37),(18,36),(19,35),(20,34),(21,33),(22,40),(23,39),(24,38),(41,59),(42,58),(43,57),(44,64),(45,63),(46,62),(47,61),(48,60)])
Matrix representation ►G ⊆ GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 15 | 0 | 11 |
0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 13 | 6 | 0 | 2 |
0 | 0 | 0 | 0 | 5 | 13 | 16 | 4 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 16 | 16 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,15,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,13,1,13,5,0,0,0,0,15,0,6,13,0,0,0,0,0,3,0,16,0,0,0,0,11,0,2,4],[1,2,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,16,16,1,0,0,0,0,0,0,0,16,0,0,0,0,16,16,0,1,0,0,0,0,0,16,0,0],[1,2,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,0,1] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C8⋊C22 |
kernel | C2×C8⋊3D4 | C2×C8⋊C4 | C8⋊3D4 | C2×C4.4D4 | C2×C4⋊1D4 | C22×D8 | C22×SD16 | C42 | C2×C8 | C22×C4 | C22 |
# reps | 1 | 1 | 8 | 1 | 1 | 2 | 2 | 2 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_8\rtimes_3D_4
% in TeX
G:=Group("C2xC8:3D4");
// GroupNames label
G:=SmallGroup(128,1880);
// by ID
G=gap.SmallGroup(128,1880);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,723,184,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations