Copied to
clipboard

## G = C142order 142 = 2·71

### Cyclic group

Aliases: C142, also denoted Z142, SmallGroup(142,2)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C142
 Chief series C1 — C71 — C142
 Lower central C1 — C142
 Upper central C1 — C142

Generators and relations for C142
G = < a | a142=1 >

Smallest permutation representation of C142
Regular action on 142 points
Generators in S142
`(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142)`

`G:=sub<Sym(142)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142) );`

`G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142)]])`

C142 is a maximal subgroup of   Dic71

142 conjugacy classes

 class 1 2 71A ··· 71BR 142A ··· 142BR order 1 2 71 ··· 71 142 ··· 142 size 1 1 1 ··· 1 1 ··· 1

142 irreducible representations

 dim 1 1 1 1 type + + image C1 C2 C71 C142 kernel C142 C71 C2 C1 # reps 1 1 70 70

Matrix representation of C142 in GL1(𝔽569) generated by

 350
`G:=sub<GL(1,GF(569))| [350] >;`

C142 in GAP, Magma, Sage, TeX

`C_{142}`
`% in TeX`

`G:=Group("C142");`
`// GroupNames label`

`G:=SmallGroup(142,2);`
`// by ID`

`G=gap.SmallGroup(142,2);`
`# by ID`

`G:=PCGroup([2,-2,-71]);`
`// Polycyclic`

`G:=Group<a|a^142=1>;`
`// generators/relations`

Export

׿
×
𝔽