Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊C47S3

Direct product G=N×Q with N=C2 and Q=C4⋊C47S3
dρLabelID
C2×C4⋊C47S396C2xC4:C4:7S3192,1061


Non-split extensions G=N.Q with N=C2 and Q=C4⋊C47S3
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊C47S3) = Dic3.5C42central extension (φ=1)192C2.1(C4:C4:7S3)192,207
C2.2(C4⋊C47S3) = D6⋊C42central extension (φ=1)96C2.2(C4:C4:7S3)192,225
C2.3(C4⋊C47S3) = C42.200D6central extension (φ=1)96C2.3(C4:C4:7S3)192,392
C2.4(C4⋊C47S3) = Dic3×C4⋊C4central extension (φ=1)192C2.4(C4:C4:7S3)192,533
C2.5(C4⋊C47S3) = C3⋊(C425C4)central stem extension (φ=1)192C2.5(C4:C4:7S3)192,210
C2.6(C4⋊C47S3) = Dic3⋊C4⋊C4central stem extension (φ=1)192C2.6(C4:C4:7S3)192,214
C2.7(C4⋊C47S3) = C22.58(S3×D4)central stem extension (φ=1)96C2.7(C4:C4:7S3)192,223
C2.8(C4⋊C47S3) = D6⋊C43C4central stem extension (φ=1)96C2.8(C4:C4:7S3)192,229
C2.9(C4⋊C47S3) = C42.202D6central stem extension (φ=1)96C2.9(C4:C4:7S3)192,394
C2.10(C4⋊C47S3) = C42.31D6central stem extension (φ=1)96C2.10(C4:C4:7S3)192,399
C2.11(C4⋊C47S3) = (C4×Dic3)⋊9C4central stem extension (φ=1)192C2.11(C4:C4:7S3)192,536
C2.12(C4⋊C47S3) = C6.67(C4×D4)central stem extension (φ=1)192C2.12(C4:C4:7S3)192,537
C2.13(C4⋊C47S3) = C4⋊(D6⋊C4)central stem extension (φ=1)96C2.13(C4:C4:7S3)192,546
C2.14(C4⋊C47S3) = D6⋊C47C4central stem extension (φ=1)96C2.14(C4:C4:7S3)192,549

׿
×
𝔽