Dihedral groups Dn

Group of symmetries of a regular n-gon, consisting of n rotations and n reflections; order 2n, generated by one rotation of order n and one reflection of order 2;
Dn = < g,h | gn=h2=1, hg=g-1h > = {e,g,g2,...,gn-1,h,gh,...,gn-1h}.
In other words, it is the split extension CnC2 with C2 acting by -1. (The non-split extension in this case is the dicyclic group.)
S3=D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26D27D28D29D30D31D32D33D34D35D36D37D38D39D40D41D42D43D44D45D46D47D48D49D50D51D52D53D54D55D56D57D58D59D60D61D62D63D64D65D66D67D68D69D70D71D72D73D74D75D76D77D78D79D80D81D82D83D84D85D86D87D88D89D90D91D92D93D94D95D96D97D98D99D100D101D102D103D104D105D106D107D108D109D110D111D112D113D114D115D116D117D118D119D120D121D122D123D124D125D126D127D129D130D131D132D133D134D135D136D137D138D139D140D141D142D143D144D145D146D147D148D149D150D151D152D153D154D155D156D157D158D159D160D161D162D163D164D165D166D167D168D169D170D171D172D173D174D175D176D177D178D179D180D181D182D183D184D185D186D187D188D189D190D191D193D194D195D196D197D198D199D200D201D202D203D204D205D206D207D208D209D210D211D212D213D214D215D216D217D218D219D220D221D222D223D224D225D226D227D228D229D230D231D232D233D234D235D236D237D238D239D240D241D242D243D244D245D246D247D248D249D250
׿
×
𝔽