Extensions 1→N→G→Q→1 with N=C2 and Q=C2xC4xDic3

Direct product G=NxQ with N=C2 and Q=C2xC4xDic3
dρLabelID
Dic3xC22xC4192Dic3xC2^2xC4192,1341


Non-split extensions G=N.Q with N=C2 and Q=C2xC4xDic3
extensionφ:Q→Aut NdρLabelID
C2.1(C2xC4xDic3) = C2xC4xC3:C8central extension (φ=1)192C2.1(C2xC4xDic3)192,479
C2.2(C2xC4xDic3) = Dic3xC42central extension (φ=1)192C2.2(C2xC4xDic3)192,489
C2.3(C2xC4xDic3) = Dic3xC2xC8central extension (φ=1)192C2.3(C2xC4xDic3)192,657
C2.4(C2xC4xDic3) = C2xC42.S3central stem extension (φ=1)192C2.4(C2xC4xDic3)192,480
C2.5(C2xC4xDic3) = C4xC4.Dic3central stem extension (φ=1)96C2.5(C2xC4xDic3)192,481
C2.6(C2xC4xDic3) = C42:6Dic3central stem extension (φ=1)192C2.6(C2xC4xDic3)192,491
C2.7(C2xC4xDic3) = C4xC4:Dic3central stem extension (φ=1)192C2.7(C2xC4xDic3)192,493
C2.8(C2xC4xDic3) = Dic3xC22:C4central stem extension (φ=1)96C2.8(C2xC4xDic3)192,500
C2.9(C2xC4xDic3) = Dic3xC4:C4central stem extension (φ=1)192C2.9(C2xC4xDic3)192,533
C2.10(C2xC4xDic3) = C12.5C42central stem extension (φ=1)96C2.10(C2xC4xDic3)192,556
C2.11(C2xC4xDic3) = C2xC24:C4central stem extension (φ=1)192C2.11(C2xC4xDic3)192,659
C2.12(C2xC4xDic3) = C12.12C42central stem extension (φ=1)96C2.12(C2xC4xDic3)192,660
C2.13(C2xC4xDic3) = Dic3xM4(2)central stem extension (φ=1)96C2.13(C2xC4xDic3)192,676
C2.14(C2xC4xDic3) = C12.7C42central stem extension (φ=1)96C2.14(C2xC4xDic3)192,681
C2.15(C2xC4xDic3) = C2xC6.C42central stem extension (φ=1)192C2.15(C2xC4xDic3)192,767
C2.16(C2xC4xDic3) = C4xC6.D4central stem extension (φ=1)96C2.16(C2xC4xDic3)192,768

׿
x
:
Z
F
o
wr
Q
<