Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Dic3⋊C4

Direct product G=N×Q with N=C2 and Q=C2×Dic3⋊C4
dρLabelID
C22×Dic3⋊C4192C2^2xDic3:C4192,1342


Non-split extensions G=N.Q with N=C2 and Q=C2×Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Dic3⋊C4) = C4×Dic3⋊C4central extension (φ=1)192C2.1(C2xDic3:C4)192,490
C2.2(C2×Dic3⋊C4) = C2×Dic3⋊C8central extension (φ=1)192C2.2(C2xDic3:C4)192,658
C2.3(C2×Dic3⋊C4) = C2×C6.C42central extension (φ=1)192C2.3(C2xDic3:C4)192,767
C2.4(C2×Dic3⋊C4) = C124(C4⋊C4)central stem extension (φ=1)192C2.4(C2xDic3:C4)192,487
C2.5(C2×Dic3⋊C4) = C24.55D6central stem extension (φ=1)96C2.5(C2xDic3:C4)192,501
C2.6(C2×Dic3⋊C4) = C24.57D6central stem extension (φ=1)96C2.6(C2xDic3:C4)192,505
C2.7(C2×Dic3⋊C4) = C2×C6.Q16central stem extension (φ=1)192C2.7(C2xDic3:C4)192,521
C2.8(C2×Dic3⋊C4) = C2×C12.Q8central stem extension (φ=1)192C2.8(C2xDic3:C4)192,522
C2.9(C2×Dic3⋊C4) = C4⋊C4.225D6central stem extension (φ=1)96C2.9(C2xDic3:C4)192,523
C2.10(C2×Dic3⋊C4) = C12⋊(C4⋊C4)central stem extension (φ=1)192C2.10(C2xDic3:C4)192,531
C2.11(C2×Dic3⋊C4) = (C4×Dic3)⋊8C4central stem extension (φ=1)192C2.11(C2xDic3:C4)192,534
C2.12(C2×Dic3⋊C4) = (C4×Dic3)⋊9C4central stem extension (φ=1)192C2.12(C2xDic3:C4)192,536
C2.13(C2×Dic3⋊C4) = C4⋊C4.232D6central stem extension (φ=1)96C2.13(C2xDic3:C4)192,554
C2.14(C2×Dic3⋊C4) = C4⋊C4.234D6central stem extension (φ=1)96C2.14(C2xDic3:C4)192,557
C2.15(C2×Dic3⋊C4) = Dic3⋊C8⋊C2central stem extension (φ=1)96C2.15(C2xDic3:C4)192,661
C2.16(C2×Dic3⋊C4) = Dic34M4(2)central stem extension (φ=1)96C2.16(C2xDic3:C4)192,677
C2.17(C2×Dic3⋊C4) = C12.88(C2×Q8)central stem extension (φ=1)96C2.17(C2xDic3:C4)192,678
C2.18(C2×Dic3⋊C4) = C2×C12.53D4central stem extension (φ=1)96C2.18(C2xDic3:C4)192,682
C2.19(C2×Dic3⋊C4) = C23.8Dic6central stem extension (φ=1)484C2.19(C2xDic3:C4)192,683
C2.20(C2×Dic3⋊C4) = C24.73D6central stem extension (φ=1)96C2.20(C2xDic3:C4)192,769

׿
×
𝔽