Extensions 1→N→G→Q→1 with N=C2 and Q=D63Q8

Direct product G=N×Q with N=C2 and Q=D63Q8
dρLabelID
C2×D63Q896C2xD6:3Q8192,1372


Non-split extensions G=N.Q with N=C2 and Q=D63Q8
extensionφ:Q→Aut NdρLabelID
C2.1(D63Q8) = C12⋊(C4⋊C4)central extension (φ=1)192C2.1(D6:3Q8)192,531
C2.2(D63Q8) = C6.67(C4×D4)central extension (φ=1)192C2.2(D6:3Q8)192,537
C2.3(D63Q8) = C4⋊(D6⋊C4)central extension (φ=1)96C2.3(D6:3Q8)192,546
C2.4(D63Q8) = D6⋊C46C4central extension (φ=1)96C2.4(D6:3Q8)192,548
C2.5(D63Q8) = (C6×Q8)⋊7C4central extension (φ=1)192C2.5(D6:3Q8)192,788
C2.6(D63Q8) = (C2×C12).54D4central stem extension (φ=1)192C2.6(D6:3Q8)192,541
C2.7(D63Q8) = (C2×C12).288D4central stem extension (φ=1)192C2.7(D6:3Q8)192,544
C2.8(D63Q8) = (C2×C12).290D4central stem extension (φ=1)96C2.8(D6:3Q8)192,552
C2.9(D63Q8) = (C2×C12).56D4central stem extension (φ=1)96C2.9(D6:3Q8)192,553
C2.10(D63Q8) = Dic6.4Q8central stem extension (φ=1)192C2.10(D6:3Q8)192,622
C2.11(D63Q8) = D12.4Q8central stem extension (φ=1)96C2.11(D6:3Q8)192,625
C2.12(D63Q8) = D125Q8central stem extension (φ=1)96C2.12(D6:3Q8)192,643
C2.13(D63Q8) = D126Q8central stem extension (φ=1)96C2.13(D6:3Q8)192,646
C2.14(D63Q8) = Dic65Q8central stem extension (φ=1)192C2.14(D6:3Q8)192,650
C2.15(D63Q8) = Dic66Q8central stem extension (φ=1)192C2.15(D6:3Q8)192,653
C2.16(D63Q8) = C22.52(S3×Q8)central stem extension (φ=1)192C2.16(D6:3Q8)192,789
C2.17(D63Q8) = (C22×Q8)⋊9S3central stem extension (φ=1)96C2.17(D6:3Q8)192,790

׿
×
𝔽