Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊C4⋊S3

Direct product G=N×Q with N=C2 and Q=C4⋊C4⋊S3
dρLabelID
C2×C4⋊C4⋊S396C2xC4:C4:S3192,1071


Non-split extensions G=N.Q with N=C2 and Q=C4⋊C4⋊S3
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊C4⋊S3) = C3⋊(C425C4)central extension (φ=1)192C2.1(C4:C4:S3)192,210
C2.2(C4⋊C4⋊S3) = C2.(C4×Dic6)central extension (φ=1)192C2.2(C4:C4:S3)192,213
C2.3(C4⋊C4⋊S3) = D6⋊C45C4central extension (φ=1)96C2.3(C4:C4:S3)192,228
C2.4(C4⋊C4⋊S3) = D6⋊C43C4central extension (φ=1)96C2.4(C4:C4:S3)192,229
C2.5(C4⋊C4⋊S3) = C6.67(C4×D4)central extension (φ=1)192C2.5(C4:C4:S3)192,537
C2.6(C4⋊C4⋊S3) = C4⋊C45Dic3central extension (φ=1)192C2.6(C4:C4:S3)192,539
C2.7(C4⋊C4⋊S3) = D6⋊C47C4central extension (φ=1)96C2.7(C4:C4:S3)192,549
C2.8(C4⋊C4⋊S3) = (C2×C4).Dic6central stem extension (φ=1)192C2.8(C4:C4:S3)192,219
C2.9(C4⋊C4⋊S3) = (C22×C4).30D6central stem extension (φ=1)192C2.9(C4:C4:S3)192,221
C2.10(C4⋊C4⋊S3) = (C2×C4).21D12central stem extension (φ=1)96C2.10(C4:C4:S3)192,233
C2.11(C4⋊C4⋊S3) = C6.(C4⋊D4)central stem extension (φ=1)96C2.11(C4:C4:S3)192,234
C2.12(C4⋊C4⋊S3) = (C2×C12).288D4central stem extension (φ=1)192C2.12(C4:C4:S3)192,544
C2.13(C4⋊C4⋊S3) = (C2×C12).55D4central stem extension (φ=1)192C2.13(C4:C4:S3)192,545
C2.14(C4⋊C4⋊S3) = (C2×C12).289D4central stem extension (φ=1)96C2.14(C4:C4:S3)192,551
C2.15(C4⋊C4⋊S3) = (C2×C12).56D4central stem extension (φ=1)96C2.15(C4:C4:S3)192,553

׿
×
𝔽