Extensions 1→N→G→Q→1 with N=C3xD16 and Q=C2

Direct product G=NxQ with N=C3xD16 and Q=C2
dρLabelID
C6xD1696C6xD16192,938

Semidirect products G=N:Q with N=C3xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD16):1C2 = C3:D32φ: C2/C1C2 ⊆ Out C3xD16964+(C3xD16):1C2192,78
(C3xD16):2C2 = S3xD16φ: C2/C1C2 ⊆ Out C3xD16484+(C3xD16):2C2192,469
(C3xD16):3C2 = D16:3S3φ: C2/C1C2 ⊆ Out C3xD16964-(C3xD16):3C2192,471
(C3xD16):4C2 = D8:D6φ: C2/C1C2 ⊆ Out C3xD16484(C3xD16):4C2192,470
(C3xD16):5C2 = C3xD32φ: C2/C1C2 ⊆ Out C3xD16962(C3xD16):5C2192,177
(C3xD16):6C2 = C3xC16:C22φ: C2/C1C2 ⊆ Out C3xD16484(C3xD16):6C2192,942
(C3xD16):7C2 = C3xC4oD16φ: trivial image962(C3xD16):7C2192,941

Non-split extensions G=N.Q with N=C3xD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD16).1C2 = D16.S3φ: C2/C1C2 ⊆ Out C3xD16964-(C3xD16).1C2192,79
(C3xD16).2C2 = C3xSD64φ: C2/C1C2 ⊆ Out C3xD16962(C3xD16).2C2192,178

׿
x
:
Z
F
o
wr
Q
<