Extensions 1→N→G→Q→1 with N=C2 and Q=C4×Dic6

Direct product G=N×Q with N=C2 and Q=C4×Dic6
dρLabelID
C2×C4×Dic6192C2xC4xDic6192,1026


Non-split extensions G=N.Q with N=C2 and Q=C4×Dic6
extensionφ:Q→Aut NdρLabelID
C2.1(C4×Dic6) = C8×Dic6central extension (φ=1)192C2.1(C4xDic6)192,237
C2.2(C4×Dic6) = C4×Dic3⋊C4central extension (φ=1)192C2.2(C4xDic6)192,490
C2.3(C4×Dic6) = C4×C4⋊Dic3central extension (φ=1)192C2.3(C4xDic6)192,493
C2.4(C4×Dic6) = (C2×C12)⋊Q8central stem extension (φ=1)192C2.4(C4xDic6)192,205
C2.5(C4×Dic6) = C6.(C4×Q8)central stem extension (φ=1)192C2.5(C4xDic6)192,206
C2.6(C4×Dic6) = C2.(C4×Dic6)central stem extension (φ=1)192C2.6(C4xDic6)192,213
C2.7(C4×Dic6) = Dic3⋊C4⋊C4central stem extension (φ=1)192C2.7(C4xDic6)192,214
C2.8(C4×Dic6) = C2412Q8central stem extension (φ=1)192C2.8(C4xDic6)192,238
C2.9(C4×Dic6) = C24⋊Q8central stem extension (φ=1)192C2.9(C4xDic6)192,260
C2.10(C4×Dic6) = C124(C4⋊C4)central stem extension (φ=1)192C2.10(C4xDic6)192,487
C2.11(C4×Dic6) = (C2×Dic6)⋊7C4central stem extension (φ=1)192C2.11(C4xDic6)192,488
C2.12(C4×Dic6) = (C2×C42).6S3central stem extension (φ=1)192C2.12(C4xDic6)192,492

׿
×
𝔽