# Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C42

Direct product G=N×Q with N=C2 and Q=S3×C42
dρLabelID
S3×C2×C4296S3xC2xC4^2192,1030

Non-split extensions G=N.Q with N=C2 and Q=S3×C42
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C42) = S3×C4×C8central extension (φ=1)96C2.1(S3xC4^2)192,243
C2.2(S3×C42) = Dic3×C42central extension (φ=1)192C2.2(S3xC4^2)192,489
C2.3(S3×C42) = Dic3.5C42central stem extension (φ=1)192C2.3(S3xC4^2)192,207
C2.4(S3×C42) = Dic3⋊C42central stem extension (φ=1)192C2.4(S3xC4^2)192,208
C2.5(S3×C42) = S3×C2.C42central stem extension (φ=1)96C2.5(S3xC4^2)192,222
C2.6(S3×C42) = D6⋊C42central stem extension (φ=1)96C2.6(S3xC4^2)192,225
C2.7(S3×C42) = C4×C8⋊S3central stem extension (φ=1)96C2.7(S3xC4^2)192,246
C2.8(S3×C42) = D6.C42central stem extension (φ=1)96C2.8(S3xC4^2)192,248
C2.9(S3×C42) = S3×C8⋊C4central stem extension (φ=1)96C2.9(S3xC4^2)192,263
C2.10(S3×C42) = Dic35M4(2)central stem extension (φ=1)96C2.10(S3xC4^2)192,266
C2.11(S3×C42) = D6.4C42central stem extension (φ=1)96C2.11(S3xC4^2)192,267
C2.12(S3×C42) = C4×Dic3⋊C4central stem extension (φ=1)192C2.12(S3xC4^2)192,490
C2.13(S3×C42) = C4×D6⋊C4central stem extension (φ=1)96C2.13(S3xC4^2)192,497

׿
×
𝔽