Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3.D4

Direct product G=N×Q with N=C2 and Q=Dic3.D4
dρLabelID
C2×Dic3.D496C2xDic3.D4192,1040


Non-split extensions G=N.Q with N=C2 and Q=Dic3.D4
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3.D4) = (C2×C12)⋊Q8central extension (φ=1)192C2.1(Dic3.D4)192,205
C2.2(Dic3.D4) = C6.(C4×Q8)central extension (φ=1)192C2.2(Dic3.D4)192,206
C2.3(Dic3.D4) = C2.(C4×Dic6)central extension (φ=1)192C2.3(Dic3.D4)192,213
C2.4(Dic3.D4) = Dic3⋊C4⋊C4central extension (φ=1)192C2.4(Dic3.D4)192,214
C2.5(Dic3.D4) = C24.55D6central extension (φ=1)96C2.5(Dic3.D4)192,501
C2.6(Dic3.D4) = C24.57D6central extension (φ=1)96C2.6(Dic3.D4)192,505
C2.7(Dic3.D4) = C24.58D6central extension (φ=1)96C2.7(Dic3.D4)192,509
C2.8(Dic3.D4) = (C2×C4)⋊Dic6central stem extension (φ=1)192C2.8(Dic3.D4)192,215
C2.9(Dic3.D4) = C6.(C4⋊Q8)central stem extension (φ=1)192C2.9(Dic3.D4)192,216
C2.10(Dic3.D4) = (C2×C4).Dic6central stem extension (φ=1)192C2.10(Dic3.D4)192,219
C2.11(Dic3.D4) = (C22×C4).85D6central stem extension (φ=1)192C2.11(Dic3.D4)192,220
C2.12(Dic3.D4) = Dic3.D8central stem extension (φ=1)96C2.12(Dic3.D4)192,318
C2.13(Dic3.D4) = D4⋊Dic6central stem extension (φ=1)96C2.13(Dic3.D4)192,320
C2.14(Dic3.D4) = D4.Dic6central stem extension (φ=1)96C2.14(Dic3.D4)192,322
C2.15(Dic3.D4) = D4.2Dic6central stem extension (φ=1)96C2.15(Dic3.D4)192,325
C2.16(Dic3.D4) = Q82Dic6central stem extension (φ=1)192C2.16(Dic3.D4)192,350
C2.17(Dic3.D4) = Q83Dic6central stem extension (φ=1)192C2.17(Dic3.D4)192,352
C2.18(Dic3.D4) = Q8.3Dic6central stem extension (φ=1)192C2.18(Dic3.D4)192,355
C2.19(Dic3.D4) = Q8.4Dic6central stem extension (φ=1)192C2.19(Dic3.D4)192,358
C2.20(Dic3.D4) = C232Dic6central stem extension (φ=1)96C2.20(Dic3.D4)192,506
C2.21(Dic3.D4) = C24.17D6central stem extension (φ=1)96C2.21(Dic3.D4)192,507
C2.22(Dic3.D4) = C24.18D6central stem extension (φ=1)96C2.22(Dic3.D4)192,508

׿
×
𝔽