Extensions 1→N→G→Q→1 with N=C2 and Q=Dic6⋊C4

Direct product G=N×Q with N=C2 and Q=Dic6⋊C4
dρLabelID
C2×Dic6⋊C4192C2xDic6:C4192,1055


Non-split extensions G=N.Q with N=C2 and Q=Dic6⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(Dic6⋊C4) = Dic3⋊C42central extension (φ=1)192C2.1(Dic6:C4)192,208
C2.2(Dic6⋊C4) = Dic6⋊C8central extension (φ=1)192C2.2(Dic6:C4)192,389
C2.3(Dic6⋊C4) = Dic3×C4⋊C4central extension (φ=1)192C2.3(Dic6:C4)192,533
C2.4(Dic6⋊C4) = (C2×C12)⋊Q8central stem extension (φ=1)192C2.4(Dic6:C4)192,205
C2.5(Dic6⋊C4) = C6.(C4×D4)central stem extension (φ=1)192C2.5(Dic6:C4)192,211
C2.6(Dic6⋊C4) = C2.(C4×D12)central stem extension (φ=1)192C2.6(Dic6:C4)192,212
C2.7(Dic6⋊C4) = C42.27D6central stem extension (φ=1)192C2.7(Dic6:C4)192,387
C2.8(Dic6⋊C4) = C42.198D6central stem extension (φ=1)192C2.8(Dic6:C4)192,390
C2.9(Dic6⋊C4) = C12⋊(C4⋊C4)central stem extension (φ=1)192C2.9(Dic6:C4)192,531
C2.10(Dic6⋊C4) = C4.(D6⋊C4)central stem extension (φ=1)192C2.10(Dic6:C4)192,532
C2.11(Dic6⋊C4) = Dic3⋊(C4⋊C4)central stem extension (φ=1)192C2.11(Dic6:C4)192,535
C2.12(Dic6⋊C4) = C6.67(C4×D4)central stem extension (φ=1)192C2.12(Dic6:C4)192,537

׿
×
𝔽