Extensions 1→N→G→Q→1 with N=C2 and Q=C2xC4xA4

Direct product G=NxQ with N=C2 and Q=C2xC4xA4
dρLabelID
A4xC22xC448A4xC2^2xC4192,1496


Non-split extensions G=N.Q with N=C2 and Q=C2xC4xA4
extensionφ:Q→Aut NdρLabelID
C2.1(C2xC4xA4) = A4xC42central extension (φ=1)48C2.1(C2xC4xA4)192,993
C2.2(C2xC4xA4) = A4xC2xC8central extension (φ=1)48C2.2(C2xC4xA4)192,1010
C2.3(C2xC4xA4) = A4xC22:C4central stem extension (φ=1)24C2.3(C2xC4xA4)192,994
C2.4(C2xC4xA4) = A4xC4:C4central stem extension (φ=1)48C2.4(C2xC4xA4)192,995
C2.5(C2xC4xA4) = C2xC4xSL2(F3)central stem extension (φ=1)64C2.5(C2xC4xA4)192,996
C2.6(C2xC4xA4) = C4xC4.A4central stem extension (φ=1)64C2.6(C2xC4xA4)192,997
C2.7(C2xC4xA4) = (C2xQ8):C12central stem extension (φ=1)32C2.7(C2xC4xA4)192,998
C2.8(C2xC4xA4) = C4oD4:C12central stem extension (φ=1)64C2.8(C2xC4xA4)192,999
C2.9(C2xC4xA4) = A4xM4(2)central stem extension (φ=1)246C2.9(C2xC4xA4)192,1011
C2.10(C2xC4xA4) = C2xC8.A4central stem extension (φ=1)64C2.10(C2xC4xA4)192,1012
C2.11(C2xC4xA4) = M4(2).A4central stem extension (φ=1)324C2.11(C2xC4xA4)192,1013

׿
x
:
Z
F
o
wr
Q
<