extension | φ:Q→Aut N | d | ρ | Label | ID |
C2.1(Dic3.Q8) = C6.(C4×Q8) | central extension (φ=1) | 192 | | C2.1(Dic3.Q8) | 192,206 |
C2.2(Dic3.Q8) = C3⋊(C42⋊8C4) | central extension (φ=1) | 192 | | C2.2(Dic3.Q8) | 192,209 |
C2.3(Dic3.Q8) = C6.(C4×D4) | central extension (φ=1) | 192 | | C2.3(Dic3.Q8) | 192,211 |
C2.4(Dic3.Q8) = C2.(C4×D12) | central extension (φ=1) | 192 | | C2.4(Dic3.Q8) | 192,212 |
C2.5(Dic3.Q8) = Dic3⋊(C4⋊C4) | central extension (φ=1) | 192 | | C2.5(Dic3.Q8) | 192,535 |
C2.6(Dic3.Q8) = C6.67(C4×D4) | central extension (φ=1) | 192 | | C2.6(Dic3.Q8) | 192,537 |
C2.7(Dic3.Q8) = C4⋊C4⋊5Dic3 | central extension (φ=1) | 192 | | C2.7(Dic3.Q8) | 192,539 |
C2.8(Dic3.Q8) = C6.(C4⋊Q8) | central stem extension (φ=1) | 192 | | C2.8(Dic3.Q8) | 192,216 |
C2.9(Dic3.Q8) = (C2×Dic3).9D4 | central stem extension (φ=1) | 192 | | C2.9(Dic3.Q8) | 192,217 |
C2.10(Dic3.Q8) = (C2×C4).17D12 | central stem extension (φ=1) | 192 | | C2.10(Dic3.Q8) | 192,218 |
C2.11(Dic3.Q8) = (C2×C4).44D12 | central stem extension (φ=1) | 192 | | C2.11(Dic3.Q8) | 192,540 |
C2.12(Dic3.Q8) = (C2×C12).54D4 | central stem extension (φ=1) | 192 | | C2.12(Dic3.Q8) | 192,541 |
C2.13(Dic3.Q8) = (C2×Dic3).Q8 | central stem extension (φ=1) | 192 | | C2.13(Dic3.Q8) | 192,542 |
C2.14(Dic3.Q8) = (C2×C12).288D4 | central stem extension (φ=1) | 192 | | C2.14(Dic3.Q8) | 192,544 |