Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3.Q8

Direct product G=N×Q with N=C2 and Q=Dic3.Q8
dρLabelID
C2×Dic3.Q8192C2xDic3.Q8192,1057


Non-split extensions G=N.Q with N=C2 and Q=Dic3.Q8
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3.Q8) = C6.(C4×Q8)central extension (φ=1)192C2.1(Dic3.Q8)192,206
C2.2(Dic3.Q8) = C3⋊(C428C4)central extension (φ=1)192C2.2(Dic3.Q8)192,209
C2.3(Dic3.Q8) = C6.(C4×D4)central extension (φ=1)192C2.3(Dic3.Q8)192,211
C2.4(Dic3.Q8) = C2.(C4×D12)central extension (φ=1)192C2.4(Dic3.Q8)192,212
C2.5(Dic3.Q8) = Dic3⋊(C4⋊C4)central extension (φ=1)192C2.5(Dic3.Q8)192,535
C2.6(Dic3.Q8) = C6.67(C4×D4)central extension (φ=1)192C2.6(Dic3.Q8)192,537
C2.7(Dic3.Q8) = C4⋊C45Dic3central extension (φ=1)192C2.7(Dic3.Q8)192,539
C2.8(Dic3.Q8) = C6.(C4⋊Q8)central stem extension (φ=1)192C2.8(Dic3.Q8)192,216
C2.9(Dic3.Q8) = (C2×Dic3).9D4central stem extension (φ=1)192C2.9(Dic3.Q8)192,217
C2.10(Dic3.Q8) = (C2×C4).17D12central stem extension (φ=1)192C2.10(Dic3.Q8)192,218
C2.11(Dic3.Q8) = (C2×C4).44D12central stem extension (φ=1)192C2.11(Dic3.Q8)192,540
C2.12(Dic3.Q8) = (C2×C12).54D4central stem extension (φ=1)192C2.12(Dic3.Q8)192,541
C2.13(Dic3.Q8) = (C2×Dic3).Q8central stem extension (φ=1)192C2.13(Dic3.Q8)192,542
C2.14(Dic3.Q8) = (C2×C12).288D4central stem extension (φ=1)192C2.14(Dic3.Q8)192,544

׿
×
𝔽