# Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=C22

Direct product G=N×Q with N=C3×C3⋊S3 and Q=C22
dρLabelID
C2×C6×C3⋊S372C2xC6xC3:S3216,175

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊C22 = S33φ: C22/C1C22 ⊆ Out C3×C3⋊S3128+(C3xC3:S3):C2^2216,162
(C3×C3⋊S3)⋊2C22 = S32×C6φ: C22/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):2C2^2216,170
(C3×C3⋊S3)⋊3C22 = C2×S3×C3⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊S336(C3xC3:S3):3C2^2216,171
(C3×C3⋊S3)⋊4C22 = C2×C324D6φ: C22/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):4C2^2216,172

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1C22 = C3×S3≀C2φ: C22/C1C22 ⊆ Out C3×C3⋊S3124(C3xC3:S3).1C2^2216,157
(C3×C3⋊S3).2C22 = C3×PSU3(𝔽2)φ: C22/C1C22 ⊆ Out C3×C3⋊S3248(C3xC3:S3).2C2^2216,160
(C3×C3⋊S3).3C22 = S3×C32⋊C4φ: C22/C1C22 ⊆ Out C3×C3⋊S3128+(C3xC3:S3).3C2^2216,156
(C3×C3⋊S3).4C22 = C33⋊D4φ: C22/C1C22 ⊆ Out C3×C3⋊S3124(C3xC3:S3).4C2^2216,158
(C3×C3⋊S3).5C22 = C322D12φ: C22/C1C22 ⊆ Out C3×C3⋊S3128+(C3xC3:S3).5C2^2216,159
(C3×C3⋊S3).6C22 = C33⋊Q8φ: C22/C1C22 ⊆ Out C3×C3⋊S3248(C3xC3:S3).6C2^2216,161
(C3×C3⋊S3).7C22 = C6×C32⋊C4φ: C22/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3).7C2^2216,168
(C3×C3⋊S3).8C22 = C2×C33⋊C4φ: C22/C2C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3).8C2^2216,169

׿
×
𝔽