Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C20

Direct product G=N×Q with N=C2 and Q=S3×C20
dρLabelID
S3×C2×C20120S3xC2xC20240,166


Non-split extensions G=N.Q with N=C2 and Q=S3×C20
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C20) = S3×C40central extension (φ=1)1202C2.1(S3xC20)240,49
C2.2(S3×C20) = Dic3×C20central extension (φ=1)240C2.2(S3xC20)240,56
C2.3(S3×C20) = C5×C8⋊S3central stem extension (φ=1)1202C2.3(S3xC20)240,50
C2.4(S3×C20) = C5×Dic3⋊C4central stem extension (φ=1)240C2.4(S3xC20)240,57
C2.5(S3×C20) = C5×D6⋊C4central stem extension (φ=1)120C2.5(S3xC20)240,59

׿
×
𝔽