Extensions 1→N→G→Q→1 with N=C18 and Q=C42

Direct product G=N×Q with N=C18 and Q=C42

Semidirect products G=N:Q with N=C18 and Q=C42
extensionφ:Q→Aut NdρLabelID
C18⋊C42 = C2×C4×Dic9φ: C42/C2×C4C2 ⊆ Aut C18288C18:C4^2288,132

Non-split extensions G=N.Q with N=C18 and Q=C42
extensionφ:Q→Aut NdρLabelID
C18.1C42 = C4×C9⋊C8φ: C42/C2×C4C2 ⊆ Aut C18288C18.1C4^2288,9
C18.2C42 = C42.D9φ: C42/C2×C4C2 ⊆ Aut C18288C18.2C4^2288,10
C18.3C42 = C8×Dic9φ: C42/C2×C4C2 ⊆ Aut C18288C18.3C4^2288,21
C18.4C42 = C72⋊C4φ: C42/C2×C4C2 ⊆ Aut C18288C18.4C4^2288,23
C18.5C42 = C18.C42φ: C42/C2×C4C2 ⊆ Aut C18288C18.5C4^2288,38
C18.6C42 = C9×C2.C42central extension (φ=1)288C18.6C4^2288,45
C18.7C42 = C9×C8⋊C4central extension (φ=1)288C18.7C4^2288,47