extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊Dic3)⋊1C2 = D12⋊4Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 24 | 4 | (C4xC3:Dic3):1C2 | 288,216 |
(C4×C3⋊Dic3)⋊2C2 = C62.37D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 72 | | (C4xC3:Dic3):2C2 | 288,300 |
(C4×C3⋊Dic3)⋊3C2 = C62.39D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 72 | | (C4xC3:Dic3):3C2 | 288,312 |
(C4×C3⋊Dic3)⋊4C2 = C62.33C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):4C2 | 288,511 |
(C4×C3⋊Dic3)⋊5C2 = D12⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):5C2 | 288,546 |
(C4×C3⋊Dic3)⋊6C2 = C62.84C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):6C2 | 288,562 |
(C4×C3⋊Dic3)⋊7C2 = C62.237C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):7C2 | 288,750 |
(C4×C3⋊Dic3)⋊8C2 = D4×C3⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):8C2 | 288,791 |
(C4×C3⋊Dic3)⋊9C2 = C62.254C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):9C2 | 288,793 |
(C4×C3⋊Dic3)⋊10C2 = C62.258C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):10C2 | 288,797 |
(C4×C3⋊Dic3)⋊11C2 = C62.262C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):11C2 | 288,804 |
(C4×C3⋊Dic3)⋊12C2 = C62.25C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):12C2 | 288,503 |
(C4×C3⋊Dic3)⋊13C2 = C62.32C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):13C2 | 288,510 |
(C4×C3⋊Dic3)⋊14C2 = C4×S3×Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):14C2 | 288,523 |
(C4×C3⋊Dic3)⋊15C2 = C62.48C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):15C2 | 288,526 |
(C4×C3⋊Dic3)⋊16C2 = C4×D6⋊S3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):16C2 | 288,549 |
(C4×C3⋊Dic3)⋊17C2 = C62.72C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):17C2 | 288,550 |
(C4×C3⋊Dic3)⋊18C2 = C62.85C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3):18C2 | 288,563 |
(C4×C3⋊Dic3)⋊19C2 = C122⋊16C2 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):19C2 | 288,729 |
(C4×C3⋊Dic3)⋊20C2 = C62.221C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):20C2 | 288,734 |
(C4×C3⋊Dic3)⋊21C2 = C62.223C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):21C2 | 288,736 |
(C4×C3⋊Dic3)⋊22C2 = C62.225C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):22C2 | 288,738 |
(C4×C3⋊Dic3)⋊23C2 = C62.229C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):23C2 | 288,742 |
(C4×C3⋊Dic3)⋊24C2 = C62.236C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):24C2 | 288,749 |
(C4×C3⋊Dic3)⋊25C2 = C62.242C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):25C2 | 288,755 |
(C4×C3⋊Dic3)⋊26C2 = C62.247C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):26C2 | 288,783 |
(C4×C3⋊Dic3)⋊27C2 = C4×C32⋊7D4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 144 | | (C4xC3:Dic3):27C2 | 288,785 |
(C4×C3⋊Dic3)⋊28C2 = C42×C3⋊S3 | φ: trivial image | 144 | | (C4xC3:Dic3):28C2 | 288,728 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊Dic3).1C2 = C62.13C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).1C2 | 288,491 |
(C4×C3⋊Dic3).2C2 = C62.42C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).2C2 | 288,520 |
(C4×C3⋊Dic3).3C2 = C62.43C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).3C2 | 288,521 |
(C4×C3⋊Dic3).4C2 = C12⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).4C2 | 288,567 |
(C4×C3⋊Dic3).5C2 = C12⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).5C2 | 288,745 |
(C4×C3⋊Dic3).6C2 = C62.234C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).6C2 | 288,747 |
(C4×C3⋊Dic3).7C2 = C62.259C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).7C2 | 288,801 |
(C4×C3⋊Dic3).8C2 = Q8×C3⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).8C2 | 288,802 |
(C4×C3⋊Dic3).9C2 = C6.(S3×C8) | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).9C2 | 288,201 |
(C4×C3⋊Dic3).10C2 = C2.Dic32 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).10C2 | 288,203 |
(C4×C3⋊Dic3).11C2 = C12.15Dic6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).11C2 | 288,220 |
(C4×C3⋊Dic3).12C2 = C12.30Dic6 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).12C2 | 288,289 |
(C4×C3⋊Dic3).13C2 = C24⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).13C2 | 288,290 |
(C4×C3⋊Dic3).14C2 = C4×C32⋊2C8 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).14C2 | 288,423 |
(C4×C3⋊Dic3).15C2 = (C3×C12)⋊4C8 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).15C2 | 288,424 |
(C4×C3⋊Dic3).16C2 = C32⋊2C8⋊C4 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).16C2 | 288,425 |
(C4×C3⋊Dic3).17C2 = C32⋊5(C4⋊C8) | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).17C2 | 288,427 |
(C4×C3⋊Dic3).18C2 = C62.8C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).18C2 | 288,486 |
(C4×C3⋊Dic3).19C2 = C62.40C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).19C2 | 288,518 |
(C4×C3⋊Dic3).20C2 = C4×C32⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 96 | | (C4xC3:Dic3).20C2 | 288,565 |
(C4×C3⋊Dic3).21C2 = C4×C32⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).21C2 | 288,725 |
(C4×C3⋊Dic3).22C2 = C62.231C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).22C2 | 288,744 |
(C4×C3⋊Dic3).23C2 = C62.233C23 | φ: C2/C1 → C2 ⊆ Out C4×C3⋊Dic3 | 288 | | (C4xC3:Dic3).23C2 | 288,746 |
(C4×C3⋊Dic3).24C2 = C8×C3⋊Dic3 | φ: trivial image | 288 | | (C4xC3:Dic3).24C2 | 288,288 |