Extensions 1→N→G→Q→1 with N=C4×C3⋊Dic3 and Q=C2

Direct product G=N×Q with N=C4×C3⋊Dic3 and Q=C2
dρLabelID
C2×C4×C3⋊Dic3288C2xC4xC3:Dic3288,779

Semidirect products G=N:Q with N=C4×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊Dic3)⋊1C2 = D124Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3244(C4xC3:Dic3):1C2288,216
(C4×C3⋊Dic3)⋊2C2 = C62.37D4φ: C2/C1C2 ⊆ Out C4×C3⋊Dic372(C4xC3:Dic3):2C2288,300
(C4×C3⋊Dic3)⋊3C2 = C62.39D4φ: C2/C1C2 ⊆ Out C4×C3⋊Dic372(C4xC3:Dic3):3C2288,312
(C4×C3⋊Dic3)⋊4C2 = C62.33C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):4C2288,511
(C4×C3⋊Dic3)⋊5C2 = D12⋊Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):5C2288,546
(C4×C3⋊Dic3)⋊6C2 = C62.84C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):6C2288,562
(C4×C3⋊Dic3)⋊7C2 = C62.237C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):7C2288,750
(C4×C3⋊Dic3)⋊8C2 = D4×C3⋊Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):8C2288,791
(C4×C3⋊Dic3)⋊9C2 = C62.254C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):9C2288,793
(C4×C3⋊Dic3)⋊10C2 = C62.258C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):10C2288,797
(C4×C3⋊Dic3)⋊11C2 = C62.262C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):11C2288,804
(C4×C3⋊Dic3)⋊12C2 = C62.25C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):12C2288,503
(C4×C3⋊Dic3)⋊13C2 = C62.32C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):13C2288,510
(C4×C3⋊Dic3)⋊14C2 = C4×S3×Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):14C2288,523
(C4×C3⋊Dic3)⋊15C2 = C62.48C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):15C2288,526
(C4×C3⋊Dic3)⋊16C2 = C4×D6⋊S3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):16C2288,549
(C4×C3⋊Dic3)⋊17C2 = C62.72C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):17C2288,550
(C4×C3⋊Dic3)⋊18C2 = C62.85C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3):18C2288,563
(C4×C3⋊Dic3)⋊19C2 = C12216C2φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):19C2288,729
(C4×C3⋊Dic3)⋊20C2 = C62.221C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):20C2288,734
(C4×C3⋊Dic3)⋊21C2 = C62.223C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):21C2288,736
(C4×C3⋊Dic3)⋊22C2 = C62.225C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):22C2288,738
(C4×C3⋊Dic3)⋊23C2 = C62.229C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):23C2288,742
(C4×C3⋊Dic3)⋊24C2 = C62.236C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):24C2288,749
(C4×C3⋊Dic3)⋊25C2 = C62.242C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):25C2288,755
(C4×C3⋊Dic3)⋊26C2 = C62.247C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):26C2288,783
(C4×C3⋊Dic3)⋊27C2 = C4×C327D4φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3144(C4xC3:Dic3):27C2288,785
(C4×C3⋊Dic3)⋊28C2 = C42×C3⋊S3φ: trivial image144(C4xC3:Dic3):28C2288,728

Non-split extensions G=N.Q with N=C4×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C3⋊Dic3).1C2 = C62.13C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).1C2288,491
(C4×C3⋊Dic3).2C2 = C62.42C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).2C2288,520
(C4×C3⋊Dic3).3C2 = C62.43C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).3C2288,521
(C4×C3⋊Dic3).4C2 = C12⋊Dic6φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).4C2288,567
(C4×C3⋊Dic3).5C2 = C122Dic6φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).5C2288,745
(C4×C3⋊Dic3).6C2 = C62.234C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).6C2288,747
(C4×C3⋊Dic3).7C2 = C62.259C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).7C2288,801
(C4×C3⋊Dic3).8C2 = Q8×C3⋊Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).8C2288,802
(C4×C3⋊Dic3).9C2 = C6.(S3×C8)φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).9C2288,201
(C4×C3⋊Dic3).10C2 = C2.Dic32φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).10C2288,203
(C4×C3⋊Dic3).11C2 = C12.15Dic6φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).11C2288,220
(C4×C3⋊Dic3).12C2 = C12.30Dic6φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).12C2288,289
(C4×C3⋊Dic3).13C2 = C24⋊Dic3φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).13C2288,290
(C4×C3⋊Dic3).14C2 = C4×C322C8φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).14C2288,423
(C4×C3⋊Dic3).15C2 = (C3×C12)⋊4C8φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).15C2288,424
(C4×C3⋊Dic3).16C2 = C322C8⋊C4φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).16C2288,425
(C4×C3⋊Dic3).17C2 = C325(C4⋊C8)φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).17C2288,427
(C4×C3⋊Dic3).18C2 = C62.8C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).18C2288,486
(C4×C3⋊Dic3).19C2 = C62.40C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).19C2288,518
(C4×C3⋊Dic3).20C2 = C4×C322Q8φ: C2/C1C2 ⊆ Out C4×C3⋊Dic396(C4xC3:Dic3).20C2288,565
(C4×C3⋊Dic3).21C2 = C4×C324Q8φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).21C2288,725
(C4×C3⋊Dic3).22C2 = C62.231C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).22C2288,744
(C4×C3⋊Dic3).23C2 = C62.233C23φ: C2/C1C2 ⊆ Out C4×C3⋊Dic3288(C4xC3:Dic3).23C2288,746
(C4×C3⋊Dic3).24C2 = C8×C3⋊Dic3φ: trivial image288(C4xC3:Dic3).24C2288,288

׿
×
𝔽