Extensions 1→N→G→Q→1 with N=2+ (1+4) and Q=C10

Direct product G=N×Q with N=2+ (1+4) and Q=C10
dρLabelID
C10×2+ (1+4)80C10xES+(2,2)320,1632

Semidirect products G=N:Q with N=2+ (1+4) and Q=C10
extensionφ:Q→Out NdρLabelID
2+ (1+4)1C10 = C5×D44D4φ: C10/C5C2 ⊆ Out 2+ (1+4)404ES+(2,2):1C10320,954
2+ (1+4)2C10 = C5×C2≀C22φ: C10/C5C2 ⊆ Out 2+ (1+4)404ES+(2,2):2C10320,958
2+ (1+4)3C10 = C5×D4○D8φ: C10/C5C2 ⊆ Out 2+ (1+4)804ES+(2,2):3C10320,1578
2+ (1+4)4C10 = C5×D4○SD16φ: C10/C5C2 ⊆ Out 2+ (1+4)804ES+(2,2):4C10320,1579
2+ (1+4)5C10 = C5×C2.C25φ: trivial image804ES+(2,2):5C10320,1634

Non-split extensions G=N.Q with N=2+ (1+4) and Q=C10
extensionφ:Q→Out NdρLabelID
2+ (1+4).1C10 = C5×D4.9D4φ: C10/C5C2 ⊆ Out 2+ (1+4)804ES+(2,2).1C10320,956
2+ (1+4).2C10 = C5×C23.7D4φ: C10/C5C2 ⊆ Out 2+ (1+4)804ES+(2,2).2C10320,959

׿
×
𝔽