p-group, cyclic, elementary abelian, simple, monomial
Aliases: C5, also denoted Z5, rotations of a regular pentagon, SmallGroup(5,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C5 |
C1 — C5 |
C1 — C5 |
C1 — C5 |
Generators and relations for C5
G = < a | a5=1 >
Character table of C5
class | 1 | 5A | 5B | 5C | 5D | |
size | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 faithful |
ρ3 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 faithful |
ρ4 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 faithful |
ρ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 faithful |
(1 2 3 4 5)
G:=sub<Sym(5)| (1,2,3,4,5)>;
G:=Group( (1,2,3,4,5) );
G=PermutationGroup([[(1,2,3,4,5)]])
G:=TransitiveGroup(5,1);
C5 is a maximal subgroup of
D5 C25 C24⋊C5 C34⋊C5
Cp⋊C5, p=1 mod 5: C11⋊C5 C31⋊C5 C41⋊C5 C61⋊C5 C71⋊C5 ...
C5 is a maximal quotient of
C25 C24⋊C5 C34⋊C5
Cp⋊C5, p=1 mod 5: C11⋊C5 C31⋊C5 C41⋊C5 C61⋊C5 C71⋊C5 ...
action | f(x) | Disc(f) |
---|---|---|
5T1 | x5-10x3-5x2+10x-1 | 58·72 |
Matrix representation of C5 ►in GL1(𝔽11) generated by
4 |
G:=sub<GL(1,GF(11))| [4] >;
C5 in GAP, Magma, Sage, TeX
C_5
% in TeX
G:=Group("C5");
// GroupNames label
G:=SmallGroup(5,1);
// by ID
G=gap.SmallGroup(5,1);
# by ID
G:=PCGroup([1,-5]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^5=1>;
// generators/relations
Export