Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4⋊Dic5

Direct product G=N×Q with N=C2 and Q=C2×C4⋊Dic5
dρLabelID
C22×C4⋊Dic5320C2^2xC4:Dic5320,1457


Non-split extensions G=N.Q with N=C2 and Q=C2×C4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4⋊Dic5) = C2×C203C8central extension (φ=1)320C2.1(C2xC4:Dic5)320,550
C2.2(C2×C4⋊Dic5) = C4×C4⋊Dic5central extension (φ=1)320C2.2(C2xC4:Dic5)320,561
C2.3(C2×C4⋊Dic5) = C2×C10.10C42central extension (φ=1)320C2.3(C2xC4:Dic5)320,835
C2.4(C2×C4⋊Dic5) = C2013M4(2)central stem extension (φ=1)160C2.4(C2xC4:Dic5)320,551
C2.5(C2×C4⋊Dic5) = C428Dic5central stem extension (φ=1)320C2.5(C2xC4:Dic5)320,562
C2.6(C2×C4⋊Dic5) = C429Dic5central stem extension (φ=1)320C2.6(C2xC4:Dic5)320,563
C2.7(C2×C4⋊Dic5) = C24.47D10central stem extension (φ=1)160C2.7(C2xC4:Dic5)320,577
C2.8(C2×C4⋊Dic5) = C206(C4⋊C4)central stem extension (φ=1)320C2.8(C2xC4:Dic5)320,612
C2.9(C2×C4⋊Dic5) = C42.43D10central stem extension (φ=1)160C2.9(C2xC4:Dic5)320,626
C2.10(C2×C4⋊Dic5) = C2×C406C4central stem extension (φ=1)320C2.10(C2xC4:Dic5)320,731
C2.11(C2×C4⋊Dic5) = C2×C405C4central stem extension (φ=1)320C2.11(C2xC4:Dic5)320,732
C2.12(C2×C4⋊Dic5) = C23.22D20central stem extension (φ=1)160C2.12(C2xC4:Dic5)320,733
C2.13(C2×C4⋊Dic5) = C2×C40.6C4central stem extension (φ=1)160C2.13(C2xC4:Dic5)320,734
C2.14(C2×C4⋊Dic5) = C23.47D20central stem extension (φ=1)160C2.14(C2xC4:Dic5)320,748
C2.15(C2×C4⋊Dic5) = M4(2).Dic5central stem extension (φ=1)804C2.15(C2xC4:Dic5)320,752
C2.16(C2×C4⋊Dic5) = C24.64D10central stem extension (φ=1)160C2.16(C2xC4:Dic5)320,839

׿
×
𝔽