Extensions 1→N→G→Q→1 with N=D5⋊C16 and Q=C2

Direct product G=N×Q with N=D5⋊C16 and Q=C2

Semidirect products G=N:Q with N=D5⋊C16 and Q=C2
extensionφ:Q→Out NdρLabelID
D5⋊C161C2 = D5.D16φ: C2/C1C2 ⊆ Out D5⋊C16808+D5:C16:1C2320,242
D5⋊C162C2 = D8.F5φ: C2/C1C2 ⊆ Out D5⋊C161608-D5:C16:2C2320,243
D5⋊C163C2 = Q16.F5φ: C2/C1C2 ⊆ Out D5⋊C161608+D5:C16:3C2320,247
D5⋊C164C2 = D5⋊M5(2)φ: C2/C1C2 ⊆ Out D5⋊C16804D5:C16:4C2320,1053
D5⋊C165C2 = Dic10.C8φ: C2/C1C2 ⊆ Out D5⋊C161608D5:C16:5C2320,1063

Non-split extensions G=N.Q with N=D5⋊C16 and Q=C2
extensionφ:Q→Out NdρLabelID
D5⋊C16.1C2 = D5.Q32φ: C2/C1C2 ⊆ Out D5⋊C16808-D5:C16.1C2320,246
D5⋊C16.2C2 = C167F5φ: C2/C1C2 ⊆ Out D5⋊C16804D5:C16.2C2320,182
D5⋊C16.3C2 = C16×F5φ: trivial image804D5:C16.3C2320,181