Extensions 1→N→G→Q→1 with N=M4(2) and Q=C20

Direct product G=N×Q with N=M4(2) and Q=C20
dρLabelID
M4(2)×C20160M4(2)xC20320,905

Semidirect products G=N:Q with N=M4(2) and Q=C20
extensionφ:Q→Out NdρLabelID
M4(2)⋊1C20 = C5×M4(2)⋊C4φ: C20/C10C2 ⊆ Out M4(2)160M4(2):1C20320,929
M4(2)⋊2C20 = C5×C426C4φ: C20/C10C2 ⊆ Out M4(2)80M4(2):2C20320,144
M4(2)⋊3C20 = C5×C22.C42φ: C20/C10C2 ⊆ Out M4(2)160M4(2):3C20320,148
M4(2)⋊4C20 = C5×M4(2)⋊4C4φ: C20/C10C2 ⊆ Out M4(2)804M4(2):4C20320,149
M4(2)⋊5C20 = C5×C82M4(2)φ: trivial image160M4(2):5C20320,906

Non-split extensions G=N.Q with N=M4(2) and Q=C20
extensionφ:Q→Out NdρLabelID
M4(2).1C20 = C5×M4(2).C4φ: C20/C10C2 ⊆ Out M4(2)804M4(2).1C20320,931
M4(2).2C20 = C5×C4.C42φ: C20/C10C2 ⊆ Out M4(2)160M4(2).2C20320,146
M4(2).3C20 = C5×D4.C8φ: C20/C10C2 ⊆ Out M4(2)1602M4(2).3C20320,155
M4(2).4C20 = C5×D4○C16φ: trivial image1602M4(2).4C20320,1005

׿
×
𝔽