Extensions 1→N→G→Q→1 with N=C2 and Q=C4×Dic10

Direct product G=N×Q with N=C2 and Q=C4×Dic10
dρLabelID
C2×C4×Dic10320C2xC4xDic10320,1139


Non-split extensions G=N.Q with N=C2 and Q=C4×Dic10
extensionφ:Q→Aut NdρLabelID
C2.1(C4×Dic10) = C8×Dic10central extension (φ=1)320C2.1(C4xDic10)320,305
C2.2(C4×Dic10) = C4×C10.D4central extension (φ=1)320C2.2(C4xDic10)320,558
C2.3(C4×Dic10) = C4×C4⋊Dic5central extension (φ=1)320C2.3(C4xDic10)320,561
C2.4(C4×Dic10) = (C2×C20)⋊Q8central stem extension (φ=1)320C2.4(C4xDic10)320,273
C2.5(C4×Dic10) = C10.49(C4×D4)central stem extension (φ=1)320C2.5(C4xDic10)320,274
C2.6(C4×Dic10) = C4⋊Dic515C4central stem extension (φ=1)320C2.6(C4xDic10)320,281
C2.7(C4×Dic10) = C10.52(C4×D4)central stem extension (φ=1)320C2.7(C4xDic10)320,282
C2.8(C4×Dic10) = C4011Q8central stem extension (φ=1)320C2.8(C4xDic10)320,306
C2.9(C4×Dic10) = C40⋊Q8central stem extension (φ=1)320C2.9(C4xDic10)320,328
C2.10(C4×Dic10) = C207(C4⋊C4)central stem extension (φ=1)320C2.10(C4xDic10)320,555
C2.11(C4×Dic10) = (C2×C20)⋊10Q8central stem extension (φ=1)320C2.11(C4xDic10)320,556
C2.12(C4×Dic10) = C10.92(C4×D4)central stem extension (φ=1)320C2.12(C4xDic10)320,560

׿
×
𝔽