Extensions 1→N→G→Q→1 with N=C2 and Q=C202Q8

Direct product G=N×Q with N=C2 and Q=C202Q8
dρLabelID
C2×C202Q8320C2xC20:2Q8320,1140


Non-split extensions G=N.Q with N=C2 and Q=C202Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C202Q8) = C207(C4⋊C4)central extension (φ=1)320C2.1(C20:2Q8)320,555
C2.2(C202Q8) = (C2×C20)⋊10Q8central extension (φ=1)320C2.2(C20:2Q8)320,556
C2.3(C202Q8) = C428Dic5central extension (φ=1)320C2.3(C20:2Q8)320,562
C2.4(C202Q8) = (C2×Dic5)⋊Q8central stem extension (φ=1)320C2.4(C20:2Q8)320,283
C2.5(C202Q8) = C10.(C4⋊Q8)central stem extension (φ=1)320C2.5(C20:2Q8)320,288
C2.6(C202Q8) = C409Q8central stem extension (φ=1)320C2.6(C20:2Q8)320,307
C2.7(C202Q8) = C408Q8central stem extension (φ=1)320C2.7(C20:2Q8)320,309
C2.8(C202Q8) = C40.13Q8central stem extension (φ=1)320C2.8(C20:2Q8)320,310
C2.9(C202Q8) = C8⋊Dic10central stem extension (φ=1)320C2.9(C20:2Q8)320,329

׿
×
𝔽