# Extensions 1→N→G→Q→1 with N=C32×C18 and Q=C2

Direct product G=N×Q with N=C32×C18 and Q=C2
dρLabelID
C3×C6×C18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C32×C18 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C32×C18)⋊1C2 = S3×C3×C18φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18):1C2324,137
(C32×C18)⋊2C2 = C18×C3⋊S3φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18):2C2324,143
(C32×C18)⋊3C2 = D9×C3×C6φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18):3C2324,136
(C32×C18)⋊4C2 = C6×C9⋊S3φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18):4C2324,142
(C32×C18)⋊5C2 = C2×C324D9φ: C2/C1C2 ⊆ Aut C32×C18162(C3^2xC18):5C2324,149

Non-split extensions G=N.Q with N=C32×C18 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C32×C18).1C2 = Dic3×C3×C9φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18).1C2324,91
(C32×C18).2C2 = C9×C3⋊Dic3φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18).2C2324,97
(C32×C18).3C2 = C32×Dic9φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18).3C2324,90
(C32×C18).4C2 = C3×C9⋊Dic3φ: C2/C1C2 ⊆ Aut C32×C18108(C3^2xC18).4C2324,96
(C32×C18).5C2 = C325Dic9φ: C2/C1C2 ⊆ Aut C32×C18324(C3^2xC18).5C2324,103

׿
×
𝔽