Extensions 1→N→G→Q→1 with N=C176 and Q=C2

Direct product G=N×Q with N=C176 and Q=C2
dρLabelID
C2×C176352C2xC176352,58

Semidirect products G=N:Q with N=C176 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1761C2 = D176φ: C2/C1C2 ⊆ Aut C1761762+C176:1C2352,5
C1762C2 = C176⋊C2φ: C2/C1C2 ⊆ Aut C1761762C176:2C2352,6
C1763C2 = C16×D11φ: C2/C1C2 ⊆ Aut C1761762C176:3C2352,3
C1764C2 = D22.C8φ: C2/C1C2 ⊆ Aut C1761762C176:4C2352,4
C1765C2 = C11×D16φ: C2/C1C2 ⊆ Aut C1761762C176:5C2352,60
C1766C2 = C11×SD32φ: C2/C1C2 ⊆ Aut C1761762C176:6C2352,61
C1767C2 = C11×M5(2)φ: C2/C1C2 ⊆ Aut C1761762C176:7C2352,59

Non-split extensions G=N.Q with N=C176 and Q=C2
extensionφ:Q→Aut NdρLabelID
C176.1C2 = Dic88φ: C2/C1C2 ⊆ Aut C1763522-C176.1C2352,7
C176.2C2 = C11⋊C32φ: C2/C1C2 ⊆ Aut C1763522C176.2C2352,1
C176.3C2 = C11×Q32φ: C2/C1C2 ⊆ Aut C1763522C176.3C2352,62

׿
×
𝔽