Extensions 1→N→G→Q→1 with N=C2 and Q=D4×C22

Direct product G=N×Q with N=C2 and Q=D4×C22
dρLabelID
D4×C2×C22176D4xC2xC22352,189


Non-split extensions G=N.Q with N=C2 and Q=D4×C22
extensionφ:Q→Aut NdρLabelID
C2.1(D4×C22) = C22⋊C4×C22central extension (φ=1)176C2.1(D4xC22)352,150
C2.2(D4×C22) = C4⋊C4×C22central extension (φ=1)352C2.2(D4xC22)352,151
C2.3(D4×C22) = D4×C44central extension (φ=1)176C2.3(D4xC22)352,153
C2.4(D4×C22) = C11×C22≀C2central stem extension (φ=1)88C2.4(D4xC22)352,155
C2.5(D4×C22) = C11×C4⋊D4central stem extension (φ=1)176C2.5(D4xC22)352,156
C2.6(D4×C22) = C11×C22⋊Q8central stem extension (φ=1)176C2.6(D4xC22)352,157
C2.7(D4×C22) = C11×C22.D4central stem extension (φ=1)176C2.7(D4xC22)352,158
C2.8(D4×C22) = C11×C4.4D4central stem extension (φ=1)176C2.8(D4xC22)352,159
C2.9(D4×C22) = C11×C41D4central stem extension (φ=1)176C2.9(D4xC22)352,162
C2.10(D4×C22) = C11×C4⋊Q8central stem extension (φ=1)352C2.10(D4xC22)352,163
C2.11(D4×C22) = D8×C22central stem extension (φ=1)176C2.11(D4xC22)352,167
C2.12(D4×C22) = SD16×C22central stem extension (φ=1)176C2.12(D4xC22)352,168
C2.13(D4×C22) = Q16×C22central stem extension (φ=1)352C2.13(D4xC22)352,169
C2.14(D4×C22) = C11×C4○D8central stem extension (φ=1)1762C2.14(D4xC22)352,170
C2.15(D4×C22) = C11×C8⋊C22central stem extension (φ=1)884C2.15(D4xC22)352,171
C2.16(D4×C22) = C11×C8.C22central stem extension (φ=1)1764C2.16(D4xC22)352,172

׿
×
𝔽