Extensions 1→N→G→Q→1 with N=Q8×C22 and Q=C2

Direct product G=N×Q with N=Q8×C22 and Q=C2
dρLabelID
Q8×C2×C22352Q8xC2xC22352,190

Semidirect products G=N:Q with N=Q8×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C22)⋊1C2 = C2×Q8⋊D11φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):1C2352,136
(Q8×C22)⋊2C2 = C44.C23φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22):2C2352,137
(Q8×C22)⋊3C2 = D223Q8φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):3C2352,141
(Q8×C22)⋊4C2 = C44.23D4φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):4C2352,142
(Q8×C22)⋊5C2 = C2×Q8×D11φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):5C2352,180
(Q8×C22)⋊6C2 = C2×D44⋊C2φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):6C2352,181
(Q8×C22)⋊7C2 = Q8.10D22φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22):7C2352,182
(Q8×C22)⋊8C2 = C11×C22⋊Q8φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):8C2352,157
(Q8×C22)⋊9C2 = C11×C4.4D4φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):9C2352,159
(Q8×C22)⋊10C2 = SD16×C22φ: C2/C1C2 ⊆ Out Q8×C22176(Q8xC22):10C2352,168
(Q8×C22)⋊11C2 = C11×C8.C22φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22):11C2352,172
(Q8×C22)⋊12C2 = C11×2- 1+4φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22):12C2352,193
(Q8×C22)⋊13C2 = C4○D4×C22φ: trivial image176(Q8xC22):13C2352,191

Non-split extensions G=N.Q with N=Q8×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C22).1C2 = Q8⋊Dic11φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).1C2352,41
(Q8×C22).2C2 = C44.10D4φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22).2C2352,42
(Q8×C22).3C2 = C2×C11⋊Q16φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).3C2352,138
(Q8×C22).4C2 = Dic11⋊Q8φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).4C2352,139
(Q8×C22).5C2 = Q8×Dic11φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).5C2352,140
(Q8×C22).6C2 = C11×C4.10D4φ: C2/C1C2 ⊆ Out Q8×C221764(Q8xC22).6C2352,50
(Q8×C22).7C2 = C11×Q8⋊C4φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).7C2352,52
(Q8×C22).8C2 = C11×C4⋊Q8φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).8C2352,163
(Q8×C22).9C2 = Q16×C22φ: C2/C1C2 ⊆ Out Q8×C22352(Q8xC22).9C2352,169
(Q8×C22).10C2 = Q8×C44φ: trivial image352(Q8xC22).10C2352,154

׿
×
𝔽