Extensions 1→N→G→Q→1 with N=D5×C18 and Q=C2

Direct product G=N×Q with N=D5×C18 and Q=C2

Semidirect products G=N:Q with N=D5×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C18)⋊1C2 = C45⋊D4φ: C2/C1C2 ⊆ Out D5×C181804-(D5xC18):1C2360,12
(D5×C18)⋊2C2 = C9⋊D20φ: C2/C1C2 ⊆ Out D5×C181804+(D5xC18):2C2360,13
(D5×C18)⋊3C2 = C2×D5×D9φ: C2/C1C2 ⊆ Out D5×C18904+(D5xC18):3C2360,45
(D5×C18)⋊4C2 = C9×D20φ: C2/C1C2 ⊆ Out D5×C181802(D5xC18):4C2360,17
(D5×C18)⋊5C2 = C9×C5⋊D4φ: C2/C1C2 ⊆ Out D5×C181802(D5xC18):5C2360,19

Non-split extensions G=N.Q with N=D5×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C18).1C2 = D5×Dic9φ: C2/C1C2 ⊆ Out D5×C181804-(D5xC18).1C2360,11
(D5×C18).2C2 = C2×C9⋊F5φ: C2/C1C2 ⊆ Out D5×C18904(D5xC18).2C2360,44
(D5×C18).3C2 = C18×F5φ: C2/C1C2 ⊆ Out D5×C18904(D5xC18).3C2360,43
(D5×C18).4C2 = D5×C36φ: trivial image1802(D5xC18).4C2360,16