# Extensions 1→N→G→Q→1 with N=C32×D5 and Q=C22

Direct product G=N×Q with N=C32×D5 and Q=C22
dρLabelID
D5×C62180D5xC6^2360,157

Semidirect products G=N:Q with N=C32×D5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32×D5)⋊C22 = S32×D5φ: C22/C1C22 ⊆ Out C32×D5308+(C3^2xD5):C2^2360,137
(C32×D5)⋊2C22 = S3×C6×D5φ: C22/C2C2 ⊆ Out C32×D5604(C3^2xD5):2C2^2360,151
(C32×D5)⋊3C22 = C2×D5×C3⋊S3φ: C22/C2C2 ⊆ Out C32×D590(C3^2xD5):3C2^2360,152

Non-split extensions G=N.Q with N=C32×D5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32×D5).1C22 = C3×S3×F5φ: C22/C1C22 ⊆ Out C32×D5308(C3^2xD5).1C2^2360,126
(C32×D5).2C22 = C3⋊S3×F5φ: C22/C1C22 ⊆ Out C32×D545(C3^2xD5).2C2^2360,127
(C32×D5).3C22 = S3×C3⋊F5φ: C22/C1C22 ⊆ Out C32×D5308(C3^2xD5).3C2^2360,128
(C32×D5).4C22 = C3⋊F5⋊S3φ: C22/C1C22 ⊆ Out C32×D5308+(C3^2xD5).4C2^2360,129
(C32×D5).5C22 = C2×C323F5φ: C22/C2C2 ⊆ Out C32×D590(C3^2xD5).5C2^2360,147
(C32×D5).6C22 = C6×C3⋊F5φ: C22/C2C2 ⊆ Out C32×D5604(C3^2xD5).6C2^2360,146
(C32×D5).7C22 = C3×C6×F5φ: C22/C2C2 ⊆ Out C32×D590(C3^2xD5).7C2^2360,145

׿
×
𝔽