Extensions 1→N→G→Q→1 with N=C18 and Q=C2×C10

Direct product G=N×Q with N=C18 and Q=C2×C10

Semidirect products G=N:Q with N=C18 and Q=C2×C10
extensionφ:Q→Aut NdρLabelID
C18⋊(C2×C10) = D9×C2×C10φ: C2×C10/C10C2 ⊆ Aut C18180C18:(C2xC10)360,48

Non-split extensions G=N.Q with N=C18 and Q=C2×C10
extensionφ:Q→Aut NdρLabelID
C18.1(C2×C10) = C5×Dic18φ: C2×C10/C10C2 ⊆ Aut C183602C18.1(C2xC10)360,20
C18.2(C2×C10) = D9×C20φ: C2×C10/C10C2 ⊆ Aut C181802C18.2(C2xC10)360,21
C18.3(C2×C10) = C5×D36φ: C2×C10/C10C2 ⊆ Aut C181802C18.3(C2xC10)360,22
C18.4(C2×C10) = C10×Dic9φ: C2×C10/C10C2 ⊆ Aut C18360C18.4(C2xC10)360,23
C18.5(C2×C10) = C5×C9⋊D4φ: C2×C10/C10C2 ⊆ Aut C181802C18.5(C2xC10)360,24
C18.6(C2×C10) = D4×C45central extension (φ=1)1802C18.6(C2xC10)360,31
C18.7(C2×C10) = Q8×C45central extension (φ=1)3602C18.7(C2xC10)360,32