Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C18

Direct product G=N×Q with N=C10 and Q=C2×C18

Semidirect products G=N:Q with N=C10 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×C18) = D5×C2×C18φ: C2×C18/C18C2 ⊆ Aut C10180C10:(C2xC18)360,47

Non-split extensions G=N.Q with N=C10 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C18) = C9×Dic10φ: C2×C18/C18C2 ⊆ Aut C103602C10.1(C2xC18)360,15
C10.2(C2×C18) = D5×C36φ: C2×C18/C18C2 ⊆ Aut C101802C10.2(C2xC18)360,16
C10.3(C2×C18) = C9×D20φ: C2×C18/C18C2 ⊆ Aut C101802C10.3(C2xC18)360,17
C10.4(C2×C18) = C18×Dic5φ: C2×C18/C18C2 ⊆ Aut C10360C10.4(C2xC18)360,18
C10.5(C2×C18) = C9×C5⋊D4φ: C2×C18/C18C2 ⊆ Aut C101802C10.5(C2xC18)360,19
C10.6(C2×C18) = D4×C45central extension (φ=1)1802C10.6(C2xC18)360,31
C10.7(C2×C18) = Q8×C45central extension (φ=1)3602C10.7(C2xC18)360,32